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Conference Program 
 

Central Europe Time  



Monday 16   

14:00-14:30 Connection to the Virtual Conference Room and Registration    

14:30 Conference Opening 
Maria Luisa Chiusano and Angelo Facchiano – Chairs of BBCC2020   

14:45-15:30 Keynote Lecture 

  Nikolay V. Dokholyan - Penn State College of Medicine, Hershey, PA, USA  

Molecular Design for Research and Therapeutics 

   
Session – Bioinformatics for molecular diseases 

Chair: Maria Luisa Chiusano, University of Naples Federico II, Naples, Italy 

 

15:30-15:50  Maria Monticelli , Andrea Riccio, Mehdi Totonchi, David B Ascher and Maria Vittoria 
Cubellis  

Analysis of whole-exome sequencing and protein modelling: the lesson from cyclin B 

15:50-16:10 Aditi Deokar 

Stratification of Systemic Lupus Erythematosus Patients with Gene Expression Data 
Reveals Expression of Distinct Immune Pathways 

16:10-16:30 Antonio Facchiano, Francesco Facchiano, Angelo Facchiano 

Molecular basis of cancer co-morbidities in COVID-19 patients 

16:30-16:50 Sohayb Bekkal Brikci, Imane Abdelli and Faiçal Hassani 

Inhibition of angiotensin converting enzyme 2 SARS-CoV-2’s receptor by natural 
compounds: in silico structure-activity relationship study 

16:50-17:10 Simone Ciccolella, Luca Denti, Paola Bonizzoni, Gianluca Della Vedova, Yuri Pirola  
and Marco Previtali 

MALVIRUS: an integrated web application for viral variant calling 

17:10-17:30 Flavia Villani , Francesco Porto, Andrea Guarracino, Robert W.Williams, Pjotr Prins, 
Gianluca Della Vedova, Erik Garrison and Vincenza Colonna 

Population genomics analyses on pangenome graphs 

17.30-17.40 Short presentations / posters  

 Carmen Biancaniello, Antonia D'Argenio, Serena Dotolo, Deborah Giordano, 
Bernardina Scafuri, Antonio d'Acierno, Anna Marabotti, Roberto Tagliaferri and 
Angelo Facchiano 

Investigating structural and functional properties of menin protein 

 Francesco Monticolo, Emanuela Palomba and Maria Luisa Chiusano 

Identification of novel potential genes involved in programmed cell death by integrated 
and comparative analyses 

17.40-18:00 Discussion and session closure 

 
  

  



Tuesday 17 
  

9:00-9:20 Connection to the Virtual Conference Room  
  

Invited Session: ELIXIR-IT for COVID-19 
Chair: Federico Zambelli – University of Milan, Italy – ELIXIR-IT 

 

9:20-9:30 Federico Zambelli - University of Milan, Italy, and ELIXIR-IT 

Introduction to ELIXIR infrastructure in Italy 

9:30-9:50 Matteo Chiara - University of Milan, Italy, and ELIXIR-IT 

Open data (and bioinformatics) in the COVID-19 pandemic 

9:50-10:10 Marco Tangaro – IBIOM-CNR, Bari, Italy and ELIXIR-IT 
Galaxy based services for Covid-19 research 

10:10-10:30 Allegra Via – IBPM-CNR, Roma, Italy, and ELIXIR-IT  

Remote teaching and online learning: challenges and opportunities 

10:30-10:40 Break  
Session: Infrastructures and Services 

Chair: Nunzio D’Agostino, University of Naples, Italy 

 

10:40-10:50 Rosa Siciliano – ISA-CNR, Avellino, Italy  
METROFOOD: an European Research Infrastructure for promoting metrology in Food 
and Nutrition 

10:50-11:10 Katharina Lauer – ELIXIR-EU Industry Officer 
ELIXIR- promoting public-private partnerships to advance science 

 
Session: Applications of computational methods 

Chair: Nunzio D’Agostino, University of Naples, Italy 

  

11:10-11:30 Anna Marabotti, Eugenio Del Prete, Bernardina Scafuri and Angelo Facchiano  

Assessing the performances of protein stability predictors 

11:30-11:50 Chitaranjan Mahapatra 
Computational Study of Action Potential Generation in Uterine Smooth Muscle cell 

11:50-12:10 Varsha Poondi Krishnan, Monika Krzak, Shir Toubiana, Sara Selig, Claudia Angelini 
and Maria Rosaria Matarazzo 

Studying the early molecular defects of ICF syndrome in patient-derived and CRISPR-
corrected iPSCs using an integrated multi-omic approach 

12:10-12:20 Short presentations / posters 

 Giorgio Maria Vingiani , Pasquale De Luca, Daniele De Luca and Chiara Lauritano 

Microalgal RNA-seq analyses to identify enzymes involved in the synthesis of bioactive 
compounds  

 Jamal Elhasnaoui, Giulio Ferrero and Michele De Bortoli  

A comprehensive evaluation of differential alternative splicing tools for RNA-seq data 

12:20-12:30 Discussion and session closure 

  



  

14:10-14:30 Connection to the Virtual Conference Room 

  

Session: Plant Sciences 
Chair: Maria Luisa Chiusano, University of Naples Federico II, Naples, Italy 

and Alessandro Cestaro, Edmund Mach Foundation, Italy  

  
Invited lectures 
 

14:30-15:15 Alessandro Cestaro - Edmund Mach Foundation, Italy  

Introduction to Elixir Plant User Community. Apple as model ... lessons learnt 
15:15-16:00 Cyr il Pommier - French National Institute for Agriculture, Food and Environment – 

URGI, INRA, Université Paris-Saclay, Versailles, France 

 Plant data management, Elixir services and recommendations for FAIR data 
publication and findability 

16:00-16:45 Astrid Junker  - Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) 
Gatersleben, Germany  

FAIR Phenomics Data Management 
16:45-17:30 Kristina Gruden  - Department of Biotechnology and Systems Biology, National 

Institute of Biology, Slovenia  

Tools for visualisation of heterogeneous datasets in plant sciences 
17:30-17:50 Francesco Loreto – Department of Biology, Agriculture and Food Sciences, The 

National Research Council of Italy  

EMPHASIS: The European infrastructural programme on plant phenothyping 

  

 Oral contributions proposed by participants 

17:50-18:10 Georgia Tooulakou, Paraskevi Manolaki, Caroline Urup Byberg, Franziska Eller, 
Brian Keith Sorrell, Tenna Riis and Maria Klapa 

Integrated eco-physiological and metabolomic analyses of the amphibious plant 
Butomus umbellatus under light limitation and nutrient varying conditions 

18:10-18:20 Short presentations / posters 
 Pierre Larmande 

The AgroLD project: A Knowledge Graph Database for plant functional genomics  
Emanuela Palomba, Francesco Monticolo, Stefano Mazzoleni and Maria Luisa 
Chiusano 

Integrated bioinformatics to investigate novel biological processes in model species 

18:20-18:40 Alessandro Cestaro and Maria Luisa Chiusano – Session chairs 
Discussion and session concluding remarks 

  

  

  

  

  

  



Wednesday 18 
  

9:00-9:20 Connection to the Virtual Conference Room 

  
 

Session: Methods for biological data analysis 
Chair: Claudia Angelini, National Research Council, Naples, Italy 

 

9:20-9:40 Marco Anteghini, Edoardo Saccenti and Vitor A.P. Martins Dos Santos 

Exploiting deep learning embeddings for sub-peroxisomal localisation 

9:40-10:00  Achal Dhariwal, Roger Junges, Tsute Chen, and Fernanda Petersen 

ResistoXplorer: a web-based tool for visual, statistical and exploratory data analysis of 
resistome data 

10:00-10:20 Pietro Hiram Guzzi, Giuseppe Tradigo and Pierangelo Veltri 

A novel algorithm for extracting common modular communities from Dual Networks. 

10:20-10:40 Giacomo Baruzzo, Ilaria Patuzzi and Barbara Di Camillo  

Zero-imputation in 16S rRNA gene studies: do we need it? 

10:49-11:00 Massimo Bellato, Lorenzo Pasotti, Giuseppe Serio, Michela Casanova, Barbara Di 
Camillo and Paolo Magni 

Novel multi- input logic gates for Synthetic Biology: analysis of the interaction between 
transcription factors and CRISPR interference 

 11:00-11:10 Short presentations/Posters 
  Claudia Angelini, Daniela De Canditiis and Anna Plaksienko  

jewel: a novel method for data integration with applications to omics data analysis 

  Giulia Babbi , Pier Luigi Martelli and Rita Casadio  

Identifying biological functions underlying phenotypes using PhenPath 

  

Invited lecture 

11:10-12:00 Ivo Grosse - Institute of Computer Science, Martin Luther University Halle-Wittenberg, 
Germany, and German Center of Integrative Biodiversity Research (iDiv) Halle-Jena-
Leipzig, Germany 
Hourglass Patterns of Embryonic and Postembryonic Development in Animals and Plants 
and the Emergence of Biodiversity on our Planet  
 

12:00 Maria Luisa Chiusano and Angelo Facchiano – Chairs of BBCC2020 
Meeting announcements and closing remarks 
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Abstract 

A CCNB3 (cyclin-B3) missense mutation is here described as causative of recurrent pregnancy loss (RPL) in 
homozygosity. CCNB3 is a cyclin with unknown structure and partner-kinase interaction, apparently 
possible both with CDK1 and CDK2. The complex clinical case required the use of structural bioinformatics 
to unravel the apparent paradox of a mutation in a non-conserved amino acid. CCNB3 model was built using 
SWISS-MODEL and its interaction with the kinases CDK1 or CDK2 modelled with pyDock and 
investigated with PISA. V1251D mutation, identified by whole-exome sequencing (WES), was investigated 
using DynaMut, which revealed its destabilizing effect on the protein. 

Valine 1251 is not conserved among mammals but frequently replaced by a threonine, the two amino acids 
belonging to different classes. DynaMut analysis showed the common role of Val and Thr in the building of 
a hydrophobic interaction with tyrosine 1192, underlying the isostericity of the apparently different amino 
acids. Aspartic acid replacement of valine in V1251D disrupts this hydrophobic interaction, destabilizing 
CCNB3 and probably also reducing its affinity for the kinases. 

We strongly believe this case study can be illustrative of the importance of structural biology in support of 
the exome analysis for diagnostic purposes. 

 



Introduction 

Recurrent pregnancy loss (RPL) affects up to 5% of clinical pregnancies (1) and triploidy accounts for about 
13% of these cases (2). The causes of RPL can be different and in certain cases depend on genetic variants 
present in the mother in genes expressed in the oocytes. In this paper Here, we describe a case due to a 
variation in the gene CCNB3 that encodes cyclin-B3 (CCNB3). Two Iranian sisters with RPL who were 
born from a consanguineous marriage between first cousins were affected by RPL. Their case was analysed 
by whole-exome sequencing, alignment and variant calling by standard and a homozygous missense variant 
g.50346749T>A (p.V1251D) (ChrX, GRCh38/hg38; SCV000886503) in exon 10 of CCNB3 was identified 
(21). 

Cyclins are regulatory subunits that bind and activate their catalytic partner serine-threonine kinases (cyclin-
dependent kinases, CDKs). They play an important role in male and female meiosis (3). The partner kinase 
of human CCNB3 is unknown (4). The structure of cyclin-B3 is yet unknown. To validate the role of the 
missense variation V1251D in CCNB3 as the cause of RPL, we carried an extensive analysis in silico, 
including protein modelling and protein docking. We identified the critical role of the methyl group of 
Valine 1251 in the stabilization of human CCNB3. 

 

Methods 

The effect of the variants was predicted using the sequence-based tool PolyPhen-2 
(http://genetics.bwh.harvard.edu/pph2) (5), whose scores correlate with the residual activity of the protein 
affected by the mutation (6), Sift (7) and Mutation Taster (8).  

The alignment of orthologous cyclin B3 sequences was obtained by retrieving the sequences from the 
KEGG databank (ORTHOLOGY: K21771) and aligning them using Clustal Omega (9). 

Homology modelling was carried out to obtain a 3D structural model of CCNB3. The isoform 1 of CCNB3 
sequence was retrieved from the UniProt database (UniProt ID: Q8WWL7). A 3D-model of CCNB3 was 
built with SWISS-MODEL (10) using as templates 6gu2 (11) or 2jgz (12) (chain B). The complexes of 
CCNB3 cyclin domain with CDK1 or CDK2 were built with the suite docking programs called pyDock (13) 
using as a receptor the structure of the kinase deposited in 6gu2 (chain A) (11) or 2jgz (chain A) (12). No 
spatial or biological restrictions were used during simulations, which allowed a complete sampling of the 
docking landscape around the kinase.  The interactions between CCNB3 cyclin domain-CDK1 or CCNB3 
cyclin domain-CDK2 with the lowest energy models obtained with pyDOCK were investigated by the server 
PISA. 

The effect of V1251D substitution on CCNB3 was determined with DynaMut (14), a suite that runs Bio3D 
(15), ENCoM (16), mCSM (17), SDM (18), and DUET (19). 

 

Results and Discussion 

The missense mutation observed in the patients results in the replacement of a hydrophobic amino acid with 
a negatively-charged one. The variant V1251D in human CCNB3 is rare and is not reported gnomAD and 
dbSNP databases. SIFT classifies it as deleterious, PolyPhen2 as probably damaging and Mutation Taster as 
disease. V1251 is not conserved and is frequently substituted by Thr in the mouse and other mammals.  

To evaluate the impact of V1251D on the function and/or stability of CCNB3 we modelled the human 
protein because its structure has not been obtained experimentally yet. Approximately 1000 amino acid 
residues at the N-terminus are predicted as disordered regions and only the destruction box (residues 60-68), 
and cyclin boxes (1132-1257 and 1259-1375) can be aligned to the other cyclins.  Residues 1126-1388 of 



CCNB3 were aligned to G2/mitotic-specific cyclin-B1 (CCNB1). V1251 is found at the end of a long alpha-
helix (residues 1238-1251), is relatively exposed to solvent but interacts via the methyl group on Cbeta 
carbon with Tyr1192 (Figure 1). 

We modelled the structure of mouse CCNB3 and found that the interaction is conserved in the mouse 
protein, in which T1257 replaces human V1251, and Y1198 replaces human Y1192. In the mouse it is the 
methyl group on Cbeta that interacts with the aromatic ring exactly as observed in the wild type human 
CCNB3. Aspartic acid cannot play the same role because on Cbeta there is only a carboxylic group. 

The importance of the interaction methyl-aromatic ring, conserved in mammals notwithstanding the change 
of the amino acid that requires two nucleotide changes, is confirmed by programs that assess the effect of 
mutations on protein stability. 

DynaMut (14) predicts that the variant V1251D destabilizes and increases the vibrational entropy of human 
CCNB3 (Figure 1). According to DynaMut, the major changes in molecular flexibility in mutant CCNB3 
occur in residues 1149-1157, 1190-1200, 1245-1257. Thus, the destabilizing effect of V1251D is directly 
exerted on the interacting Tyr 1192, and indirectly on the region 1149-1157. The destabilizing effect of 
V1251D on human CCNB3 was confirmed by SDM (18), and DUET (19).  

The partner kinase of human cyclin B3 in vivo is unknown (4). The modelled CCNB3 was docked onto the 
structures of human CDK1 (11) or CDK2 (12). Several low energy poses clusters and the interaction of 
human CCNB3 with the kinases closely resembles those of CCNB1 with the kinases. V1251 is located 
between two regions (L1249-N1250 and K1253-I1258) that are in contact with the kinases. 

 

 

 

 

Figure 1: Intramolecular interactions made by V1251 (green) (left). Hydrophobic interactions, calculated 
using Arpeggio (20), are shown in green dashed lines. The introduction of an Asp (magenta) will alter these 
interactions, and lead to an increase in molecular flexibility in the region to accommodate the larger charged 
residue (right), with the cartoon coloured by the change in vibrational energy between the wildtype and 
mutant structures from blue (rigidification of the structure) to red (gain in flexibility). 

 

 



Conclusion 

Our experiments aimed to prove the causality of a variant in a human pathology. The case was particularly 
difficult because valine that is present in the wild type protein, is not conserved in mammals, but is often 
substituted by a threonine. According to the most popular classifications of the amino acids valine and 
threonine are not “similar” amino acids. Hence the doubt about the deleterious effect of a substitution on 
valine by another polar amino acid. The case required the analysis of the structure, which unfortunately was 
not available.  Homology modelling and protein docking were instrumental to prove that V1251D can 
destabilize human CCNB3, thus reducing its intracellular concentration. In addition to this, the mutation 
might affect the affinity of the cyclin with kinases. We believe that this example proves the role of structural 
bioinformatics in the very “hot” field of exome analysis for diagnostic purposes. 
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Abstract 

To investigate comorbidities in COVID-19 patients, we analyzed the role of five human genes, known 

to encode coronavirus receptors/interactors (ACE2, TMPRSS2, CLEC4M, DPP4 and TMPRSS11D), 

in normal and cancer tissues. We integrated different tools and resources (i.e., DisGeNet, Genemania, 

DAVID, GEPIA2 and GENT2, Chilibot) to identify human diseases associated with these genes, 

finding relationships with the most frequent COVID-19 comorbidities, i.e. acute respiratory syndrome, 

cardiovascular diseases, diabetes, and cancer. In particular, their expression levels were found to be 

significantly altered (P < 0.0001) in colon, kidney, liver, testis, thyroid and skin cancers. These results 

suggest that three genes are relevant markers of kidney, liver, and thyroid cancer. Further 

investigation into their role is needed, in order to better understand molecular basis underlying 

comorbidities and follow-up of patients who have recovered from SARS-CoV-2 infection, and 

possibly to improve the recovery of COVID-19 patients. 
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Abstract

Essential oils (EOs) extracted from medicinal plants gained interest in research due to their potential 
effectiveness as antimicrobial compounds that can substitute chemical drugs for treatment of different 
disease. This study aims to use Tetraclinis articulata EO to block the activity of the angiotensin converting 
enzyme 2 (ACE2) as a receptor for SARS-CoV-2, his infection is triggered by binding of the spike protein 
of the virus to ACE2, which is highly expressed in the heart and lungs. Barbary thuja (Tetraclinis 

articulata), is an aromatic species that is essentially confined to the western Mediterranean region. It plays 
an important socioeconomic role in North Africa; it constitutes a pasture land for livestock and provides 
products for domestic use, and it widely used in traditional medicine for its multiple therapeutic virtues. 
This study reveals that some natural compounds extracted from Tetraclinis articulata give the best 
molecular docking scores, compared to the co-crystallized inhibitor �-D-mannose of the enzyme ACE2, to 
Chloroquine, and Hydroxychloroquine antiviral drugs also involved in other mechanisms as inhibition of 
ACE2 cellular receptor.  A set of tests: the druglikeness property test, ADME/T test, PASS & P450 site of 
metabolism prediction, pharmacophore mapping and Molecular dynamics, were performed to determine the 
safety and efficacy of these ligands. This study revealed for the first time that the components of Tetraclinis 

articulata essential oils can be used as potential inhibitors to the ACE2 receptor of SARS-CoV-2. 

Keywords : Essential oils, Tetraclinis articulata, SARS-CoV-2, Molecular docking.
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Abstract 

Being able to efficiently call variants from the increasing amount of sequencing data daily produced from 

multiple viral strains is of the utmost importance, as demonstrated during the COVID-19 pandemic, in order 

to track the spread of the viral strains across the globe. 

We present MALVIRUS, an accurate, easy-to-install, and easy-to-use web application that assists users in 

(1) computing a variant catalog consisting in a set of population SNP loci from the population sequences and 

(2) efficiently calling variants of the catalog from a read sample. 

Tests on Illumina and Nanopore samples prove the efficiency and the effectiveness of MALVIRUS in 

genotyping SARS-CoV-2 strain samples with respect to GISAID data. 

 

Introduction 

The SARS-CoV-2 pandemic has put the global health care services to the test and many researchers are 

racing to face its swift and rapid spread. Since the outbreak of the virus in China and in other European 

countries, several studies are using sequencing technologies to track the geographical origin of SARS-Cov-2 

and to analyze the evolution of sequence variants (1, 2). In this context, the availability of efficient 

approaches to analyze variations from the growing amount of sequencing data daily produced is of the 

utmost importance. 

The typical pipelines for the analysis of variations within viral samples consists in aligning reads against a 

reference genome (3), then analyzing the alignments to discover the variants (4, 5). However, the increasing 

number of viral assemblies available in public databases such as GISAID (6), GenBank (7), and the 

COVID-19 Data Portal allows to build a complete catalog of variants of a viral population. Such a catalog 

can be used to reduce the complexity of comparative analysis of genetic variants of sequencing samples. 

Clearly, to this aim, it is crucial that users are assisted by an efficient and easy-to-use method for building 

and updating the catalog and for calling variants that are in this catalog. In this paper, we introduce 

MALVIRUS, a web application for quickly genotype newly sequenced viral strains, including but not 

limited to the SARS-CoV-2 strains. The application is distributed as a multi-platform Docker container and 

it can be easily accessed using any modern Internet browser. As use case, we show that MALVIRUS is 

accurate at genotyping newly sequenced SARS-CoV-2 strains on both short and long read data. 

 

Methods 

To efficiently genotype a viral sample from an individual with respect to the current knowledge, we propose 

MALVIRUS a web application based on five state-of-the-art tools. 



The application is divided into two logically distinct modules: the creation of the catalog containing the SNP 

loci of the viral species under investigation and the variant calling from the read sample. Fig. 1 shows the 

MALVIRUS pipeline. 

Figure 1. Schematic representation of the pipeline integrated in MALVIRUS. 

The first module requires as input the reference genome of the species under investigation, the assemblies of 

a set of strains of that species, and, if available, the annotation of the genes. The output of this module is the 

set of population SNP loci in VCF format. MALVIRUS first builds the full-length sequence alignment of 

the input sequences to the input reference genome using MAFFT (8), then extracts the set of population SNP 

loci from the multiple alignment using snp-sites (9). Since snp-sites is not able to output variants in positions 

with gaps, MALVIRUS fills the gaps in the alignment with the corresponding portions of the reference. 

Although this step might induce some artificial variants, it allows to preserve real ones that might be lost due 

to incomplete assemblies. If the population under investigation is well characterized and/or the user wants a 

finer control over the variant catalog, it is possible to upload a custom catalog of SNP loci in VCF format 

instead of relying on the automatic computation from a set of assemblies. 



Figure 2. Example of the final report of MALVIRUS. 

The second module requires as input a sample of reads in FASTA/Q format and a catalog of population SNP 

loci along with the corresponding reference genome chosen among the ones computed or uploaded in the 

first module. The output of the second module is a VCF containing the genotype information of the sample 

and their qualities. To call the genotype of each variant, this module counts the k-mers in the sample using 

KMC3 (10), then it genotypes the variants using MALVA (11): an efficient and accurate mapping-free 

approach for genotyping a set of known SNPs and indels initially developed for human individuals. We 

extended MALVA to support haploid organisms and high-coverage samples. Additionally, if gene 

annotation is available, the module also annotates the functional effects of each variant using SnpEff (12). 

Finally, the results of each analysis can be visualized as a table (see Fig. 2 for an example) or downloaded in 

VCF format or as a spreadsheet for further analysis. 

MALVIRUS is available as a self-hosted web application distributed as a Docker container image that can 

be installed and run on multiple platforms, from personal laptops to large cloud infrastructures. For user 

convenience, the application is distributed with a set of precomputed catalogs of variants for SARS-CoV-2 

based on the assemblies available on GenBank (7), therefore the user can immediately run MALVIRUS on a 

locally available (e.g., private) viral sample. The precomputed catalogs can be easily updated from the 

application itself with a single click. 

Extensive documentation and a detailed tutorial are available at https://algolab.github.io/MALVIRUS. 

 

Results  

To test the effectiveness of MALVIRUS, we considered 10 strains from the GISAID database for which a 

sample of raw reads is available on the Sequence Read Archive (SRA). These were the only samples that we 

were able to cross-reference between GISAID and SRA at the moment of writing, furthermore for 5 of such 

strains we analyzed reads sequenced using both Illumina and Oxford Nanopore technologies, showing that 

MALVIRUS achieves similar results on both data types. 

For simulating a real case scenario, where the goal is to genotype a newly-sequenced strain, before 

analyzing a sample, we removed it from the set of complete SARS-CoV-2 strains available on GISAID 

(accessed on July 17, 2020) and we ran MALVIRUS on the remaining 42709 strains for building the variant 

catalog. From the 42709 strains, the first module of MALVIRUS produced a VCF containing 13709/13710 

variants (depending on which strains were removed). Then, we genotyped such a catalog using the second 

module of MALVIRUS starting from the corresponding read samples. 



To evaluate the overall accuracy of MALVIRUS we computed its precision and recall in genotyping the set 

of known variants produced by its first module. To compute precision and recall, we used the first module of 

MALVIRUS to build the variant catalog with respect to the considered strain (i.e., the strain we removed) 

and we used it as truth set. We then classified each variant as a reference variant if its real genotype is 0, i.e. 

the reference allele, and as an alternate variant if its genotype is not 0. Finally, we compute the precision 

and recall of MALVIRUS and reported the results of this analysis in Table 1. 

MALVIRUS scored a perfect precision (100%) on both reference and alternate alleles, while recall on the 

reference is almost perfect (99.9-100%) with some loss of recall on the alternate alleles. This loss of recall 

on the alternate alleles is caused by the fact that, especially on ONT data, some SNPs exhibit an unexpected 

and extremely low coverage that together with the high error rate makes them harder to correctly genotype. 

A careful inspection of these cases showed that a different choice of parameters (especially the k-mer size) 

improves its accuracy, allowing it to correctly genotype most of these low-covered SNPs at the cost of 

slightly lower precision. However, we believe that the default parameters of MALVIRUS allow to achieve 

the best trade-off between precision and recall. Finally, a single SNP (5508:T>C) is unique to the specific 

strain considered (GISAID ID EPI_ISL_416410) and cannot be present in the variant catalog built by the 

first module of MALVIRUS. Therefore, that variant could not be genotyped by the second module of 

MALVIRUS. However, since the rapidly increasing number of available complete sequences will broaden 

the variant catalog, we can expect that this situation will be uncommon in the next few months. On the other 

hand, such an increasing amount of data does not significantly challenge MALVIRUS since each step of the 

pipeline is efficient. 

We ran MALVIRUS using 8 threads and the analysis of each sample completed in 50/60 minutes requiring 

less than 7GB of RAM. Such amount of resources is nowadays available on any computer, allowing 

MALVIRUS to run even on laptops and desktop machines. The first module of our application (catalog 

creation) required less than 15 minutes and less than 12GB of RAM. Anyway, we point out that the catalog 

creation needs to be run only when new strains are available, that each catalog can be reused multiple times, 

and that the software is distributed with a precomputed variant catalog built using the sequences available on 

NCBI. 

Table 1. Results on real data. For each considered strain (GISAID ID, for ease of presentation we removed the EPI_ISL_ prefix) and the 

corresponding SRA sample, we report the Precision and Recall obtained by MALVIRUS on calling reference variants (i.e., those variants whose 

real genotype is the reference allele, REF) and alternate variants (i.e., those variants whose real genotype is the alternate allele, ALT). For each 

sample, we also report the technology used (ONT for Oxford Nanopore and ILLU for Illumina) and its coverage (in terms of number of bases). 

GISAID ID SRA ID Seq. 

Tech. 

# of 

bases 

Precision 

REF 

Recall 

REF 

Precisio

n ALT 

Recall 

ALT 

416410 SRR11397727 ONT 331 1 0.999 1 0.5 

416410 SRR11397730 ILLU 178 1 0.999 1 0.5 

416411 SRR11397726 ONT 363 1 1 1 1 

416411 SRR11397729 ILLU 109 1 1 1 1 

416412 SRR11397721 ILLU 126 1 1 1 1 

416412 SRR11397725 ONT 236 1 0.999 1 0.57 

416413 SRR11397720 ILLU 82 1 1 1 1 

416413 SRR11397724 ONT 221 1 0.999 1 0.83 

416415 SRR11397718 ILLU 112 1 0.999 1 0.6 

416415 SRR11397722 ONT 381 1 0.999 1 0.4 

416514 SRR11397717 ILLU 89 1 1 1 1 

416515 SRR11397716 ILLU 81 1 1 1 1 

416516 SRR11397715 ILLU 96 1 1 1 1 

430819 SRR11667145 ILLU 13 1 0.999 1 0.75 

430820 SRR11667146 ILLU 25 1 0.999 1 0.714 

  



Conclusions 

In this work, we presented MALVIRUS, a web application for quickly genotyping viral strains. As shown 

by our tests, MALVIRUS is able to efficiently and accurately genotype a newly sequenced SARS-CoV-2 

strain both from short (Illumina) and long (Oxford Nanopore) reads. Since MALVIRUS benefits from 

comprehensive variant catalogs, the constantly increasing number of available strains will broaden the 

completeness of the current variant knowledge, thus boosting the overall accuracy of our pipeline. 

 

Acknowledgements 

This project has received funding from the European Union�s Horizon 2020 research and innovation 

programme under the Marie Sk�odowska-Curie grant agreement No. 872539. 

 

References 

1. F. Gudbjartsson et al., �Spread of SARS-CoV-2 in the Icelandic population,� New England Journal 

of Medicine, vol. 382, pp. 2302�2315, 2020. 

2. M. Bohmer et al., �Investigation of a COVID-19 outbreak in Germany resulting from a single travel-

associated primary case: a case series,� The Lancet, vol. 20, no. 8, pp. 920�928, 2020. 

3. H. Li, �Minimap2: pairwise alignment for nucleotide sequences,� Bioinformatics, vol. 34, no. 18, pp. 

3094�3100, 2018. 

4. McKenna et al., �The Genome Analysis Toolkit: a MapReduce framework for analyzing next-

generation DNA sequencing data,� Genome research, vol. 20, no. 9, pp. 1297�1303, 2010. 

5. Wilm et al., �LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-

population heterogeneity from high-throughput sequencing datasets,� Nucleic acids research, vol. 40, 

no. 22, pp. 11 189�11 201, 2012. 

6. Y. Shu and J. McCauley, �GISAID: Global initiative on sharing all influenza data�from vision to 

reality,� Eurosurveillance, vol. 22, no. 13, p. 30494, 2017. 

7. W.  Sayers et al., �GenBank,� Nucleic Acids Research, vol. 48, no. D1, pp. D84�D86, 2019. 

8. K. Katoh and D. Standley, �MAFFT multiple sequence alignment software version 7: improvements 

in performance and usability,� Molecular biology and evolution, vol. 30, no. 4, pp. 772�780, 2013. 

9. J.  Page et al., �SNP-sites:  rapid efficient extraction of SNPs from multi-FASTA alignments,� 

Microbial genomics, vol. 2, no. 4, 2016. 

10. M.  Kokot, M. D�ugosz, and S. Deorowicz, �KMC  3: counting and manipulating k-mer statistics,� 

Bioinformatics, vol. 33, no. 17, pp. 2759�2761, 2017. 

11. L. Denti, M. Previtali, G. Bernardini, A. Schonhuth, and P. Bonizzoni, �MALVA: genotyping by 

Mapping-free ALlele detection of known VAriants,� iScience, vol. 18, pp. 20�27, 2019. 

12. Pablo Cingolani et al. �A program for annotating and predicting the effects of single nucleotide 

polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-

3,� Fly, vol. 6, no. 2, pp. 80-92, 2012. 



Population genomics analyses on pangenome graphs

Flavia Villani1, Francesco Porto2, Andrea Guarracino3, Robert W. Williams4, Pjotr Prins4, Gian-

luca Della Vedova2, Erik Garrison5, Vincenza Colonna1

1National Research Council, Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Napoli,

Italy; 2Department of Informatics, Systems, and Communication, University of Milano-Bicocca, Italy;
3Centre for Molecular Bioinformatics, Department of Biology, University Of Rome Tor Vergata, Rome,

Italy; 4Department of Genetics, Genomics and Informatics, College of Medicine, UTHSC 5University of

California, Santa Cruz, US

Introduction

Population genomics is the study of the causes and the consequences of genetic variability

within and among populations. Population genomics is based on the study of variable sites. The

accuracy of the inferences made by population genomics analyses is strictly correlated to the

amount of information on genetic variation. For this reason, the field of population genomics has

been particularly active in the last ten years, due to the unprecedented availability of genomic

sequences that made possible the identification of millions of novel genetic variants [1, 2, 3].

Nevertheless, most of the population genomics studies are based on genomic variants which

are simple to detect like single nucleotide variants and and very few studies deal with complex

structural variants so far. This is mostly due to the inability to have reliable data set of complex

structural variants, a limitation that is now being tackled by the use of long-reads sequence

technology and pangenomes.

Standard approaches in sequence analysis relate sequences to a single linear reference

genome. Sequence fragments produced by NGS technologies are mapped and assembled

against a reference genome, and genetic variants are identified through comparison with it.

While this is an efficient way of processing sequence information, the approach has a funda-

mental problem; substantial differences from the reference sequence are hard to observe and

describe. As pangenome we refer to the entire set of genomic elements in a given species

or clade. Pangenomic methods allow us to overcome limitations of the use of the reference

genomes, relating all genomes directly to each other; sequences and variations are combined

[4]. In pangenome variation graphs, genetic variants appear as bubbles. These sites have

a common starting context (a single inbound node), a common exit point (a single outbound

node), and a diversity of possible paths that connect the two, each of which represents an allele

[5]. We consider these bubbles in the context of a data model developed to represent the basic

components of variation graphs, the handlegraph abstraction [6]. This data structure breaks

down the elements of a variation graph and proposes a programming interface based on them.

We use this data model as the basis for algorithms to find bubbles, their alleles, and the frequen-

cies of these alleles among the genomes embedded in the graph.

Pangenomes are large, and unwieldy to work with as raw collections of sequences. One

possible approach to processing them considers the collection of genomes and their mutual

alignment in a compact, graphical model. As a lossless representation of the pangenome and

its embedded sequence variations, these variation graphs should, at least in principle, support

any kind of population genetic analysis that would be completed on simpler representations of

the genomes and their variations. But, because this pangenomic approach is quite recent, the

software for population genetic analyses currently available are still mostly based on genomic

data in the linear format.

Here we respond to this need by implementing VGPOP, a set of tools for population genetics
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on genome graphs. At a high level, our work has two parts. We first uncover genomic variation

embedded in pangenomic variation graphs by developing and implementing straightforward al-

gorithms for bubble detection on variation graphs. We then demonstrate the calculation of basic

population genetic parameters over variation graphs.

Methods

Implementation of the VGPOPlibrary We developed a library named VGPOP to conduct standard

population genetics analyses using pangenomic data models. Typically represented in the Graphical

Fragment Assembly (GFA) format [7], these models can represent whole genome alignments in a com-

pact graphical structure. The library is written in the Python programming language under MIT license;

the code is publicly available on GitHub (https://github.com/Flavia95/VGpop). Currently VGPOP has

three sets of functions detailed in the following paragraphs.

1. Functions for the identification of variable sites The first mandatory step for any further population

genetics analysis is to extract from the graphs the information about variable sites, i.e. the regions where

more that one type of sequence is present. Any population genetic analysis is indeed based on the

information contained in the variable segments of the sequence and their occurrence in the population

under investigation. Because of their appearance in the pangenome graph, variable sites are referred to

as bubbles. We implemented two main functions for bubble detection, namely BUBBLEPOP and BUBBLE-

CALL.

The BUBBLEPOP function takes as input a GFA file and gives as output a dictionary, i.e. a table of

correspondences between region of the graph and sequence variants. It explores the graph using the

two recursive algorithms, the Depth First Search (DFS) [8, 9] and the Breadth First Search (BFS) [10, 11].

In BUBBLEPOP, we run BFS on the tree obtained by DFS. Starting from the tree root, the DFS explores

the tree until it finds a bubble, that is a pair of nodes whose distance from the root is the same. When

this happens it calculates the distance from the root of all the nodes in the bubble.

At the beginning of the bubbles all paths share the same identical node, and this is true also at the

end of the bubble.

Once the pangenome has been decomposed with BUBBLEPOP in a tree whose information on the

node distance from the root is stored in dictionary, BUBBLECALL explicits the content of the bubbles and

its position in relation to a chosen reference sequence in three steps:

1. Choosing the reference path - We consider all the possible paths that connect the initial node and

the final node of each bubble, the first path in the GFA file is chosen as reference (REF)

2. Variant identification - In this step BUBBLECALL iterates over all available nodes to analyze paths

traversing the node and compare them with the reference node. BUBBLECALL considers all the

possible paths pairs(x,y) in which x is the REF and y is any other path. A node is called as a

variant if:

• (i) it is supported by at least one path;

• (ii) the node sequence is different from the sequence of the corresponding reference node;

• (iii) if its distance from the root is the same as the one of the reference node, than the variant

is classified as a Single Nucleotide Variants (SNV);

• (iv) if its distance from the root is smaller that the one of the reference node then the variant

is classified as a Deletion;

• (v) if its distance from the root is greater that the one of the reference node then the variant is

classified as an Insertion.

3. Variant positioning - This step defines the position of a variants with respect to the reference se-

quence. When the two paths were used to call the variants, the length of the sequences was taken

into account in order to map the variants on the individual paths.
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Re-implementation in Rust Population genomics analysis requires the study of a large number of in-

dividuals of any species, therefore the pangenomic approach has to be implemented in a way that is

applicable to graphs of any complexity. For this reason, we decided to re-implement the core functions

of our library in Rust; this project is publicly available on GitHub at https://github.com/HopedWall/

rs-gfatovcf. Rust is a programming language which allows us to build reliable and efficient programs

when compared to other languages, such as Python, which was used for our original implementation.

In order to achieve scalability, the following changes were made:

1. we employed a non-recursive strategy for building the spanning tree, since the original procedure

required an excessive amount of memory on large graphs. The Rust implementation, instead, uses

a queue-based approach, which prevents this type of problem.

2. we introduced as a parameter the maximum amount of edges to traverse during the BUBBLECALL

step. This is required since finding all paths between two given nodes is a problem which is known

to be NP-hard, hence it may take exponential time. This change limits the running time but might

result in missing some paths.

3. introduced the ability to set only specific paths as references, avoiding the variant identification with

respect to all the paths in the graph. This should increase performances when simpler analyses

are required.

2. Functions for format conversion

The GFA2VCF function of VGPOP takes as input a graph in the GFA format and outputs a correspond-

ing linear representation in the VCF format, i.e. the file format that is currently used to store sequence

information on variable sites. To do this gfa2vcf uses first BUBBLEPOP to decompose the pangenome

in a tree and then BUBBLECALL to identify the variable sites. Finally the dictionary of the variable site is

formatted according to the vcf specifications.

3. Functions for population genetics

GFA2ALLELEFREQ - The frequency of an allele is an indication of how common the allele is in a popu-

lation. It is calculated by counting how many times the allele appears in the population, divided by the

total number of copies of the gene. The code we developed for the GFA2ALLELEFREQ function of VG-

POPtakes as input a graph in GFA format and a metadata file (with information on paths, individuals, and

populations), and outputs a file that contains the allele frequencies for variable loci per each population.

In GFA2ALLELEFREQ the allele frequency corresponds to the number of paths that support a node (i.e. a

variant) divided by the total number of paths actually realized. The frequencies of monomorphic nodes

(i.e. frequency = 1) are not reported. GFA2ALLELEFREQ first uses bubblepop and bubblecall to read the

graph, and than applies calculation of frequencies.

GFA2FST - The Wright’s fixation index (Fst) is a measure of population differentiation due to genetic

structure [12]. It is estimated from genetic polymorphism data, such as SNV or microsatellites. Several

formulae exists for its calculation among which the one that estimates it as the standardized variance of

allele frequencies among sub-populations. The code we developed for the GFA2FST function of VGPOP,

takes as input an allele frequencies file, and as output a file that contains the calculation of Fst. GFA2FST

first uses BUBBLECALL and BUBBLEPOP to read the graph, and than applies GFA2ALLELEFREQ to calcu-

late allele frequencies and than calculates F st as the standardized variance of allele frequencies among

subpopulations: F st= s2/p (1-p) with s2 and p being the variance and mean, respectively, of the allele

frequencies.

GFA2TAJIMASD - The test statistic developed by Tajima [13] allows to identify non-random evolution of

DNA sequences and consists in the ratio between two estimate of the effective population size (i.e. a

measure of genetic diversity [14]): the number of segregating sites and the nucleotide diversity. The code

we developed for GFA2TAJIMASD takes as input a GFA and outputs the corresponding value of the test

statistic.
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Results
Calculation of F st on simulated data using GFA2FST. To test if the calculation made by VGPOPare

accurate, we applied VGPOPfunctions to data for which we can predict ranges of expectations for the

parameters calculated by VGPOP. In particular we used sequence data produced by simulation under

a known demographic scenario of two populations separating from a common ancestral population to

measure the degree of separation calculated as F st.

As simulation scenario we considered a model adapted from [15] with two diploid populations sepa-

rating without subsequent migration. The first population is bigger in size compared to the second, and

through time develops maintaining constant size until 5k generations ago when it starts to exponentially

expand. The second population develops through time maintaining constant size. We considered three

possible scenarios for separation time: 5k (T1), 10k (T2), and 15k (T3) generations ago. The expectation

is that the longer the separation time, the higher will be the F st, with scenario T3 having the higher F st

compared to T2 and T1.

We used the software ms [15] to produce 100 replicates of simulated variable sites in a 10kb region

for eighty individuals under each of the three scenario. The variable sites were transformed in sequences

that include also the invariable part (using Seq-Gen [16]) and the sequences were used to reconstruct the

pangenome of the simulated data that was then processed with the GFA2FST function of the VGPOPlibrary.

F st calculation was validated using vcftools REF, that uses a different F st formula.

We found that the F st trend vary according to expectation of the three simulated scenario, i.e. the

lowest value is found at T1 and the highest at T3. We observe the same trend when calculating F st with

a different formula as a control. Nevertheless, the absolute values of F st obtained from VGPOPare lower

that those obtained from vcftools, suggesting that a further comparison would be required to fully clarify

the discordance and improve the VGPOPlibrary.

Allele frequencies at variable loci of the human HLA region using GFA2ALLELEFREQ The HLA region

is located on the short arm of chromosome 6 from 6p21.1 to p21.3 in a region spanning 7Mb. The class

II region includes genes for the α and β chains of the MHC class II molecules HLA-DR, HLA-DP and

HLA-DQ. In addition, the genes encoding the DMα and DM β chains, as well as the genes encoding the

α and β chains of the DO molecule (DO α and DO β, respectively), are also located in the MHC class II

region [17].

In the latest version of the human reference genome (GRCh38), there are alternate loci highly poly-

morphic where the sequence variation is too complex to be represented with a single sequence [18].

These loci are known to co-segregate with disease and are therefore of great interest in population ge-

netics. Sequence reads alignment in the HLA region, is known to be particularly difficult, particularly in

regions originating from highly polymorphic regions and regions absent from the reference genome.

We considered three genes of the HLA region, HLA-E, and HLA-DMA, and HLA-C. For these three

genes we started from eleven (HLA-DMA), nine (HLA-E), and ten (HLA-C) sequences downloaded from

GenBank. We used the sequences to reconstruct the pangenomes. The pangenomes of HLA-E and

HLA-DMA are less complex compared to the pangenome of HLA-C, suggesting less diversity in these

two genes compared to HLA-C. We used the pangenomes to detect of variable sites (bubbles) with BUB-

BLEPOP, and then the allele frequencies are calculated as the number of paths supporting the variant

node divided by total number of paths using GFA2ALELLEFREQ.

Variant identification in Sars-CoV-2 using rs-gfatovcf

Since the main motivation for re-implementing GFA2VCF in Rust was the ability to use it on larger

graphs, we considered the Sars-CoV-2 pangenome available at http://covid19.genenetwork.org/ in

GFA format. This pangenome is composed of sequences of approximately 1.2 GBytes and with 78571

fragments, obtained from 15127 genomes. rs-gfatovcf is capable of obtaining a VCF file from it in 16

minutes on a machine with 256GB RAM, we found 294626 variants. While this result is satisfactory, we

want to exploit concurrent and parallel computing to reduce its running time.

Conclusions

We have presented the results of our project to develop VGPOP, a library for population genetic

analyses based on pangenome graphs.
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The use of pangenomes and variation graphs is one of the major changes in genomics.

Because this approach is quite recent, there has been little focus on developing software for

population genetic analyses from pangenomes, and in fact almost all the already available soft-

ware is based on genomic data in the linear format. With our project we contributed to fill this

gap by writing software for population genetic analyses able to deal with pangenomes.

Two function of VGPOP, BUBBLEPOP and BUBBLECALL, have the primary function to parse the

pangenome and identify the variable sites (bubbles). These two functions are exploited by some

of the others, like GFA2ALLELEFREQ and GFA2FST that instead produce population genetics

summary statistics. Finally, other functions, e.g. GFA2VCF are utility to convert file formats. This

set of functions does not cover all possible needs for population genetic analyses, but it shows

that several types of function are required to cover all possible tasks.

We first tested VGPOP on simulated data where we could rely on known expectations. We

demonstrated that with VGPOP we can reliably estimate genetic distance between a pair of popu-

lations in three scenarios of increasing genetic diversity, using as a measure of diversity F st, one

of the basic summary statistics in population genetics. We also demonstrated that VGPOPcan

calculate allele frequencies in regions of the genome with complex genetic variability, such as

the HLA region, a complex variable region due to the high degree of similarity and polymorphism

of its genes. The range of complexity in the variability of the HLA region made it also possible

to test the limitations of VGPOP. Finally, we focused on the Sars-CoV-2 pangenome, which we

chose for its current international relevance. This pangenome also acts as a benchmark for

what the Rust version of VGPOPcan do, as it targets bigger graphs, which would cause memory

problems in the original Python implementation.

Overall, with our project we demonstrated that VGPOP can calculate the basic statistics for

population genomics inference directly from pangenomes. VGPOP is able to process pange-

nomic data, therefore putatively access complex variants scantily considered so far in popula-

tion genomics. Even if in its current form VGPOP is only effective with simple variants, it has

the potential to be adapted also for more complex ones. To our knowledge, this is the first such

exploration that has been undertaken in the scope of this representation. Our work suggests

a series of follow-up studies to extend related population genetic metrics to pangenome mod-

els. We hope to explore the development of haplotype-based scans for genetic selection (e.g

nSL [19], iHS [20], and xp-ehh [21]) to pangenome graphs, as well as other measures of fre-

quency differentiation between populations could be applied to alleles in bubbles in the graph

(e.g. PBS [22]).

We are also aware of the current limitations of VGPOP, namely (1) the inability to detect

complex bubbles and (2) its overall running time on larger graphs. In order to address (1),

we are looking into a new bubble detection algorithm [5]. In order to address (2), we plan on

exploiting parallel computing, which we hope will drastically improve the the running time of our

functions.
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Abstract 

The prediction of the changes in protein�s thermodynamic stability caused by mutations is a hard task to 

perform and, despite decades of development of dedicated predictors, there are still doubts about their 

reliability. Moreover, also the creation of a reference database to assess their performances is difficult 

because of the paucity of high quality, reliable data. In this work we present the creation of a reliable dataset 

of proteins and the assessment we have made of five predictors available online, representing different 

approaches developed so far, describing also the problems we had to face and the solutions we have 

adopted. Results show that these tools are surely more reliable than the past, but still far from ideal, and that 

some main issues are still present, such as the bias towards the destabilizing mutations. In general, the binary 

interpretation �less/more stable� must be taken with caution when the predicted ��G is within the interval 

±0.5 kcal/mol. The combination of several predictions is a rough, but effective way to increase the reliability 

of the results. 

Introduction 

The knowledge of the impact of a mutation on the thermodynamic stability of a protein is crucial to 

understand how this mutation can perturb the structure-function-dynamics relationships of that protein, and 

to identify possible approaches to prevent or counteract this problem. However, it is often hard to perform in 

vitro testing of the protein�s destabilization following mutations, especially when hundreds of mutations are 

associated to a single protein, such as in the case of rare diseases [1]. Therefore, in the past decades, many 

methods to predict the effect of a mutation on the thermodynamics stability of a protein have been 

developed (reviewed in [2]). Several assessments questioned the reliability of these predictors (for a review, 

see [2]) because the risk of obtaining a wrong prediction using these tools appears to be high. Most of these 

assessments were performed on methods and tools that have been updated later, or on methods based on a 

single approach. Moreover, we noticed that the experimental data related to the impact of mutations on 

protein stability are often of low quality, with noise and errors, and the efforts made to improve these data 

[3], although very valuable, are still not sufficient to guarantee high data quality. 

Therefore, the focus of this work was, on one side, to create a dataset including only high reliable data in 

terms not only of thermodynamic experiments, but also of structural data, and on the other side, to use this 

dataset to assess five popular, Web-accessible methods for predicting the impact of mutations on protein 

stability, representative of the different approaches used so far to develop predictors in this field. 

Methods 

Starting from VariBench dataset [3], we performed a further selection in order to include in our dataset only 

high-quality reference proteins, in terms of both thermodynamic experimental data and quality of structures 



associated to them. Since the data available are also biased in terms of quantity of destabilizing mutations 

towards stabilizing ones, we created a balanced dataset in order to take into account this issue. We also took 

into account the fact that most predictors are not able to handle directly multimeric proteins, by creating two 

different datasets, one for monomeric and one for multimeric proteins, and assessing separately the 

predictions made on these two groups. 

The predictors assessed were: INPS-3D [4] (https://inpsmd.biocomp.unibo.it/inpsSuite/default/index3D), a 

machine-learning method tailored to face the problem of anti-symmetric property; PoPMuSiC [5] 

(https://soft.dezyme.com/query/create/pop), a method formed by a linear combination of statistical 

potentials, tailored to correct the bias toward destabilizing mutations; DynaMut [6] 

(http://biosig.unimelb.edu.au/dynamut/), one of the most recent Web servers developed, based on Normal 

Mode to take into account the contribution of protein flexibility; DUET [7] 

(http://biosig.unimelb.edu.au/duet/), a consensus predictor; MAESTROweb [8] 

(https://pbwww.che.sbg.ac.at/maestro/web), the only Web server able to manage both multimeric proteins 

and compound heterozygous multiple mutations.  

To assess the reliability of the predictors, we evaluated if the sign of the DDG predicted by the different tools 

was in agreement with the sign of the experimental measure associated to the same mutation, and we 

calculated for each method its accuracy, sensitivity, specificity, precision towards the different datasets 

created. We calculated the Receiver Operating Characteristic (ROC) curve and the Precision-Recall curve 

(PRC), and calculated the Area Under the Curve (AUC) for both curves to compare the various prediction 

methods. All statistics were carried out in R language, using in particular the precrec package for confusion 

matrix [9], and ggplot2 package for graphs [10]. 

 

Results and Discussion  

Our final �gold standard� dataset for benchmarking includes 48 proteins, of which 10 are homodimeric, 1 is 

homotetrameric and the others are monomeric. Mutations affecting monomeric proteins are 759, mutations 

affecting multimeric proteins are 265, for a total of 1024 mutations. 585 mutations are considered 

destabilizing (��G < -0.5 kcal/mol), 168 slightly destabilizing (-0.5 £ ��G < 0 kcal/mol) and 103 slightly 

stabilizing (0 < ��G £ 0.5 kcal/mol), 147 stabilizing (��G > 0.5 kcal/mol), and 21 mutations with ��G=0. 

Since mutations with ��G<0 are three times those with ��G>0, we derived two subsets of mutations (one 

for monomeric and one for multimeric proteins) well balanced for the distribution of ��G, by keeping all 

stabilizing mutations, and picking an equal number of destabilizing mutations, balanced for type of protein, 

type of mutation, and ��G distribution. 

Statistics calculated on those mutations causing a ��G energy variation outside the range of the 

experimental error of 0.5 kcal/mol, calculated on the total reference datasets of monomeric and multimeric 

proteins (Figure 1) show that in general, DynaMut underperforms the other methods, and that predictions 

made on monomers are more reliable than those made on multimeric proteins. Statistics calculated on those 

mutations causing a ��G energy variation inside the range of the experimental error of 0.5 kcal/mol show 

that all the methods in this range are unreliable (data not shown). The analyses made on the balanced 

dataset, however, show that the MCC of the predictions of all predictors, including those that claimed to be 

tailored expressly to take into account the antisymmetric property, are clearly low (Table 1). In particular, 

DynaMut is the predictor with the highest precision (true positive rate), indicating that it is the less biased 

towards destabilizing mutations. Using a consensus of predictors, the MCC is higher with respect to the 

MCC calculated for every single predictor. The consensus of 3/5 predictors performs better in the full 

dataset of monomeric proteins, whereas the consensus of 2/3 predictors performs better in the balanced 

dataset of monomeric proteins and in the full dataset of multimeric proteins (Table 2). 

From these data, it appears that: i. there is a general improvement in the reliability of predictors developed in 

the last years with respect to the older ones [2], but there is still room for improvement; ii. despite the efforts 

of their developers, most predictors are still biased towards destabilizing mutations; iii. most predictors 

available are not able to manage multimeric proteins, and in general, it is more difficult to derive an overall 

result in the case of multimeric proteins; iv. when the experimental ��G value of a mutation is close to the 

experimental error, all the predictors return essentially random predictions for this mutation; v. using the 

results of single predictors to perform an "in house" consensus procedure, it is possible to increase the 

reliability compared with the single best performing method. 
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Figure 1: Panels (A) and (B) show, respectively, the ROC and PRC for predictions made on the dataset of monomeric proteins, 

taking into account only those mutations with a DDG value outside the range of the experimental error. Panels (C) and (D) show, 

respectively, the ROC and PRC for predictions made on the dataset of multimeric proteins, taking into account only those 

mutations with a DDG value outside the range of the experimental error. 

  



Table 1: general results from the assessment on the balanced dataset of monomeric and multimeric proteins 

True negative and true positive values have been considered as those predictions that correctly predicted a negative and a positive 

sign for destabilizing and stabilizing mutations, respectively. For PoPMuSiC and MAESTROweb that assume a positive sign for 

destabilizing mutations, we inverted the sign of their output. 

Values calculated for mutations in the balanced dataset of monomeric proteins  

causing a DDG >|0.5|kcal/mol 

 PoPMuSiC DynaMut DUET INPS-MD MAESTROweb 

Accuracy 0.68 0.65 0.75 0.71 0.72 

Specificity 0.62 0.70 0.70 0.64 0.68 

Sensitivity 0.85 0.61 0.83 0.87 0.79 

Precision 0.43 0.78 0.63 0.48 0.61 

MCC 0.40 0.31 0.51 0.46 0.46 

Values calculated for mutations in the balanced dataset of multimeric proteins 

causing a DDG >|0.5|kcal/mol 

 PoPMuSiC DynaMut DUET INPS-MD MAESTROweb 

Accuracy 0.69 0.61 0.67 0.59 0.64 

Specificity 0.60 0.58 0.61 0.53 0.57 

Sensitivity 0.91 0.64 0.78 0.82 0.76 

Precision 0.47 0.67 0.55 0.31 0.49 

MCC 0.46 0.22 0.38 0.29 0.32 

 

Table 2: consensus of the predictors. 

True negative and true positive values have been considered as those predictions that correctly found a negative and a positive 

sign for destabilizing and stabilizing mutations, respectively. For PoPMuSiC and MAESTROweb that assume a positive sign for 

destabilizing mutations, we inverted the sign of their output. Data have been reported for mutations causing a ��G energy 

variation outside the range of the experimental error, in the full and the balanced datasets of both monomeric and multimeric 

proteins. a: results obtained using DynaMut, DUET and INPS-MD; b: results obtained using PoPMuSiC, DUET and 

MAESTROweb; c: results obtained using PoPMuSiC, DUET and INPS-MD. 

Values calculated the full dataset 

 Monomeric proteins Multimeric proteins 

 3/5 methods 2/3 methodsa
 3/5 methods 2/3 methodsb

 

Accuracy 0.90 0.88 0.83 0.84 

Specificity 0.92 0.93 0.85 0.86 

Sensitivity 0.79 0.67 0.73 0.72 

Precision 0.62 0.72 0.49 0.53 

MCC 0.64 0.62 0.50 0.53 

Values calculated for the balanced dataset 

 Monomeric proteins Multimeric proteins 

 3/5 methods 2/3 methodsa
 3/5 methods 2/3 methodsc

 

Accuracy 0.76 0.78 0.69 0.69 

Specificity 0.70 0.75 0.60 0.60 

Sensitivity 0.86 0.83 0.91 0.91 

Precision 0.62 0.72 0.47 0.47 

MCC 0.54  0.57 0.46 0.46 

 

Conclusion 

Despite the high numbers of predictors available, and despite the continuous work made by developers in the 

past decades, the reliability of these tools is still far from ideal and the bias towards destabilizing mutations 

is still present even in the most recent predictors. We advise especially �naive� users to interpret with 

caution those predicted results falling in the range of the experimental error, preferring in that case to define 

the effect of the mutation on the stability of the protein as "uncertain". 
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Abstract

Abstract: Stress urinary incontinence is defined by the involuntary loss of urine during the sneezing and 
coughing. The urethral smooth muscle cell contributes to stress urinary incontinence by generating 
spontaneous mechanical and electrical activities. It generates spontaneous electrical events in the terms of 
membrane depolarization and action potentials. Therefore, a complete understanding of the urethral smooth 
muscle cell�s spontaneous action potential biophysics will help in identifying novel pharmacological targets
for the stress urinary incontinence. The action potential is evoked by the activation of various ion channels 
across the cell membrane. This study aims in establishing a computational model of the single urethral 
smooth muscle cell to simulate the action potential after incorporating all-important ion channels. The ion 
channels are designed with Hodgkin- Huxley formalism, where the internal kinetics are expressed in terms 
of the ordinary differential equations. This computational model generates experimental spontaneous action 
potential and the underlying ionic currents in urethral smooth muscle cell successfully. In summary, this 
mathematical model contributes an elemental tool to investigate the physiological ionic mechanisms 
underlying the spikes in the urethral smooth muscle cell, which in turn can shed light on the genesis of stress 
urinary incontinence.

Introduction

The International Continence Society has defined urinary incontinence (UI) as a condition in which 
involuntary loss of urine is objectively demonstrable and is a social or hygiene problem [1]. Among 
different types of UI, stress urinary incontinence (SUI) is one, which is a common syndrome in women that 
is typically associated with advanced age, obesity, diabetes mellitus, and fertility [2]. Stress urinary 
incontinence, defined as a �complaint of involuntary loss of urine on effort or physical exertion or on 

sneezing or coughing� by the International Continence Society [3, 4]. The smooth muscles from the urinary 
bladder and urethra display spontaneous contractility patterns, which are associated with UI and SUI. The 
mammalian urethra is known to exhibit spontaneous tonic contraction activity during the urine-storage 
phase [5]. Although the factors regulating the SUI are not still precisely identified, it is also widely 
demonstrated that the abnormal urethral smooth muscle (USM) cell contraction phenomena play an 
important role in regulating these activities [6, 7, 8]. The isolated USM cell from various species shows 
slow waves, spontaneous depolarization (SD), and spontaneous action potentials (sAPs) as its� intracellular 

electrical activity [7, 9, 10]. The sAPs trigger spontaneous contractions by permitting extracellular calcium 
(Ca2+) via the voltage-gated Ca2+ channels across the membrane and releasing stored Ca2+ from the 
sarcoplasmic reticulum (SR) in the intracellular compartment [5,10,11]. The resting membrane potential 
(RMP) values of the USM cell are in the range from � 35 mV to � 45 mV [12, 13, 14]. The sAPs can be 
fired spontaneously or evoked by the external stimulation [13]. The array of ion channels located across the 
USM cell membrane play a crucial role in regulating both RMP and sAP formation and therefore the overall 
function of the urethra [15]. Therefore, a better understanding of the ion channel kinetics in forming the 
USM cell sAP would shed light on developing improved therapies for the SUI.

Biophysical constrained computational models always provide a virtual experimental set up to investigate 
the underlying ionic mechanisms for the cell�s electrical activities. Over the past decades, several 

computational models have been developed for the neuronal and cardiac cells to investigate individual ion 
channels� contribution in generating the action potential. However, there are a few numbers of 



computational models are developed for smooth muscle electrophysiology. To address this gap, recently, 
we have developed a biophysically constrained computational model for the detrusor smooth muscle (DSM) 
AP by incorporating nine ion channels [16, 17, 18 , 19]. As both DSM and USM contractions are related to 
UI and SUI, this paper presents the first biophysically based model of USM AP which integrates some ionic 
currents underlying the electrogenic processes in the urethra. This single-cell USM model can be 
subsequently coupled to other active ionic currents and a syncytium model to examine hypotheses 
concerning the generation of SUI. 

Methods

The first step in developing this computational model is to form a conceptual model expressed by the 
mathematical equations. The classical Hodgkin-Huxley (HH) approach is implemented to form this 
conceptual model. According to the HH formalism, the cell membrane can be interpreted into an equivalent 
parallel conductance circuit consisting of membrane capacitance and several variable conductances 
representing all ion channels. The USM cell model simulation is performed in �NEURON� [20] software 
environment. The �NEURON� simulation platform is designed to investigate electrophysiological properties 
in biological excitable cells at different spatiotemporal levels. For USM cell geometry, a cylindrical 
morphology is considered with length and diameter of 200 µm and 6µm respectively. The membrane 
capacitance (Cm), membrane resistance (Rm), and axial resistance (Ra) are basic electrical properties of the 
excitable cell membrane. For this model, the Cm, Rm, and Ra are taken as 1µF/cm2, 138M!� cm2, and 181!-
cm respectively. Figure 1 illustrates the USM cell model as a parallel conductance model. The membrane 
capacitance (Cm) is shunted by an array of ion channel conductances gion with respective Nernst potentials 
Eion. The ion channels in the USM cell model are Ca2+ activated Cl- channel (gCaCl, ECl), voltage-gated Ca2+

channel (gCaL, gCaT, ECa), voltage-gated K+ channel (gKv, EK), Ca2+ activated K+ channel(gKca, EK), ATP-
dependent K+ channel (gKATP, EK) and leakage currents (gLeak, ELeak). The leakage current is considered as a 
constant value. Applying Kirchhoff�s current law, we will get the following differential equation describing 
changes in transmembrane potential Vm. The time dependence of the membrane potential is governed by the 
following differential equation 

 !"#
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where both Vm, and Iion represent the transmembrane potential and sum of the ionic currents across the cell 
membrane. The units of both Vm and Iion are in mV and pA respectively. 
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Figure 1. A USM cell parallel conductance Model. It describes all membrane currents and transmembrane potential.

All ionic currents were modeled according to the Hodgkin-Huxley formalism, which is expressed by the 
following equation.

 = !"#$%&(') * +,-.//0 (3)  



where  ! is the maximum conductance, Erev is the ion�s Nernst/reversal potential, m and h are the 

dimensionless activation and inactivation gating variables. 
Both m and h are dependent upon membrane potential and time.  First order differential equations are used 
to express the time dependent properties of both m and h. The following differential equation represents the 
dynamics of �m� variable.

"""""""""""""""""""""""""#$#% = ($&"'$)
*+ (4)                                                                        

where m! is the steady-state value of the m and "m, is the time constant for reaching the steady-state value.
These are also functions of voltage and/or ionic concentrations.
In addition, the steady-state inactivation and activation values for all ion channels are described by the 
following Boltzman equation. 

""""""",- ="1 1 . exp"((/$ . /0"
2
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Where V1/2 is the half activation potential and S is the slope factor. For our model, both V1/2 and S are taken 
from the published experimental data. 
The sAPs were induced in the whole-cell model by applying an external stimulus current as brief rectangular 
pulses or synaptic input.

Results

There is an array of ion channels discovered in USM cell electrophysiology to regulate the cell�s 

excitability. It includes T and L-type voltage-gated Ca2+ channels (ICaL and ICaT), ATP-dependent K+ channel 
(IKATP), two outward rectifying voltage-gated K+ channel (IKA and IKv), Ca2+, and voltage-dependent large-
conductance K+ channel (IKCa), Ca2+ dependent Cl- channel (IClCa) and the leakage channel (ILeak).
The biophysical details of one inward current (ICaL) and one outward current (IKv) are presented in the 
following section.

L-type Calcium current (ICaL)

Several researcher groups have elucidated the presence of two types of Ca2+ channel (Transient and long-
lasting type) in USM cell electrophysiology. However, the L-type (Long-lasting) Ca2+ channel (ICaL) is 
responsible for the major inward current in USM cells [5,15]. It is demonstrated that ICaL is activated first 
between Vm � �35 and �20mV; the peak magnitude of the current-voltage (I�V) relationship curve appears 
at Vm � 10mV. The half-activation potentials for both steady-state activation and inactivation curve are �3.4
mV and �24.8 mV respectively. The Nerst potential ECaL is fixed at 45mV. The equations of ICaL

incorporate both activation (m) and inactivation (h) gating variables. The biophysical parameters for the 
ICaL are extracted from the published experimental data in human USM electrophysiology [21]. Figure 2 (A) 
shows the steady-state activation and inactivation curve with respect to membrane potential. 

Figure 2. USM ICaL model. A steady state activation and inactivation parameter curve and B shows the current traces 

from the voltage clamp protocol

The red and black solid lines represent simulated steady-state curves for inactivation and activation 
parameters respectively. The superimposed filled squares and triangles represent the experimental data [21].



The whole-cell current ICaL is simulated according to the voltage clamp protocol for a duration of 200 ms. 
The holding potential is �70 mV. Simulated tracings of ICaL are shown in figure 2 (B).

Voltage gated K+ current (IKv)

Like the DSM cell, a number of different K+ channels with small and large conductance properties are 
reported in the USM cell [22]. Among the various K+ channels, the voltage-gated outward rectifier K+

channels (IKv) is identified in many spices [Brading et al., 2006]. The IKv is partially responsible for 
containing the outward current during the repolarization phase of the action potential. It is demonstrated 
that IKv is significantly found as a part of the outward current after Vm � �20 mV. The half-activation 
potentials for both steady-state activation and inactivation curve are �7 mV and �56 mV respectively. The 
Nerst potential EK is fixed at �70 mV. The equations of IKv also incorporate both activation (m) and 
inactivation (h) gating variables. The biophysical parameters for the IKv are extracted from the published 
experimental data in rabbit USM electrophysiology [22]. Figure 3 (A) shows the steady-state activation and 
inactivation curve with respect to membrane potential. The red and black solid lines represent simulated 
steady-state curves for inactivation and activation parameters respectively. The superimposed filled squares 
and triangles represent the experimental data [22]. The whole-cell current IKv is simulated according to the 
voltage clamp protocol for a duration of 500 ms. The holding potential is �60 mV. Simulated tracings of IKv 

are shown in figure 3 (B).

Figure 3. USM IKv model. A steady state activation and inactivation parameter curve and B shows the current traces from 

the voltage clamp protocol

AP Simulation 

The AP can be evoked either by the external current injection via the inserted electrode or by the induced 
synaptic input from the neighbor nerve. Seven numbers of ionic conductances are incorporated into this 
single USM cell model. The USM cell model successively responded to both current and synaptic input 
stimuli by showing all-or-none AP firing properties. A current input is a step input pulse with different 
amplitudes and durations. A synaptic input is also mimicked by the alpha function to evoke AP in our 
model. The voltage threshold is � !35mV. Figure 4 presents the simulated AP after inducing a synaptic 

input to mimic the experimental AP in [22].

                                                                         Figure 4. The simulated AP in the USM model.



Table 1 compares the simulated AP with experimental one [22] in terms of RMP, peak amplitude, AP 
duration, and AHP (afterhyperpolarization potential).

TABLE I Comparison between simulated AP and Experimental AP [22]

RMP

(mV)

Peak 
(mV)

AHP

(mV)

Duration (ms)

Experiment � 60 11 � 73 97
Simulation � 60 12 �72 98

Discussion

The primary objective of this study was to develop and validate a computational model of a USM cellular 
electrophysiology. The model description integrates those ion channels that were significantly contributing 
to generate the USM cell AP. The ion channel kinetics are characterized by the Hodgkin and Huxley 
formalism after extracting all parameter values from the literature on USM electrophysiology. The model 
has demonstrated its� ability by simulating the experimental AP successfully. 
The assumptions and simplification approaches are concerned about developing a perfect mathematical 
model.
A better physiologically realistic model is always based on enough electrophysiological data obtained from 
a single species. However, due to experimental setup complexity, these data are not always available from 
the same species. We, therefore, made assumptions driven from values obtained from USM in different 
species (rat, human, mouse, pig, guinea pig, and rabbit) and under various experimental conditions. Some 
debate also exists with regard to the ionic conductances that are involved in the repolarizing phase. It has 
been suggested that more than one K+ conductance (for example fast A-type K+ current [15] may carry a 
portion of the outward current. However, due to a lack of experimental evidence, this model doesn�t include 

this channel. Another question can also be raised towards simulating the experimental AP when the single 
USM cell is coupled to the other cell.
In the present state, this model is at an elementary stage. Integration of other active channels, Na+- Ca2+

exchanger, Ca2+ ATPase pump and sarcoplasmic reticulum Ca2+ releasing mechanism will improve this 
model towards a more comprehensive stage. In addition, the expansion of this single-cell model to 
syncytium or network level will help to establish a better physiologically realistic computational model for 
investigating the SUI.
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Abstract 

 DNMT3B is one of the major de novo methyltransferases responsible for the genome-wide methylation 

during the early stages of embryonic development. Immunodeficiency, Centromeric instability and Facial 

anomalies syndrome (ICF syndrome) is a rare autosomal recessive disorder where about 60% of the patients 

carry hypomorphic mutations in DNMT3B gene. The wide spectrum and varying degree of severity of 

clinical phenotypes can be postulated to the genome-wide effect of DNMT3B dysfunction. To elucidate the 

early molecular mechanisms involved in the pathogenesis of ICF syndrome , we have performed 

comparative multi-omic analysis of Whole Genome Bisulfite Sequencing(WGBS) and RNA-Seq datasets 

from control, patient-derived iPSCs and their CRISPR/Cas9-corrected clones. 

The global level of DNA methylation was not dramatically reduced in patients compared to controls. 

However, we identified about 27,000 differentially methylated regions (DMRs) uniformly distributed across 

the chromosomes. Approximately 74% of hypomethylated DMRs in patients were rescued in both of their 

respective corrected clones. A significant percentage of differentially expressed genes in patients compared 

to controls were associated to DMRs. 

To understand the complex interplay between the methylation and expression defects within the chromatin 

context, ChIP-Seq data for DNMT3B binding and H3K4me3 and H3K36me3 marks were analysed and the 

integrated results will be discussed in detail.  
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Abstract

Amphibious plants have to cope with ever changing growth conditions in their habitats with respect to 
nutrient and light availability, having evolved specialized adaptation mechanisms. Furthering our currently 
limited understanding of these toleration processes is a major ecophysiology research area. The major 
objective of this study was to systemically investigate the response of Butomus umbellatus, a common 
amphibious species in Denmark, to nutrient level changes and shading in a large-scale mesocosm 
experiment, through integrated morphological, eco-physiological and metabolomic analyses with the use of 
systems biology and bioinformatic tools. Using this methodological approach, we were able to identify 
when the increase in nutrient levels, initially promoting plant growth, reached a point of saturation for B. 

umbellatus physiological acclimation and tolerance. Moreover, multivariate analysis of the combined 
morpho-physiological and metabolomic profiles indicated them as discriminatory of the shading compared 
to the open treatment conditions independently of the nutrient level, while this discrimination is not 
directly available from the eco-physiological measurements alone. Our results underline the usefulness of 
the systems biology methodological framework in stream ecology research. The challenge of the ecological 
research is to adapt these analytical protocols and use the results for open field experiments and studies.
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Abstract

We are the first investigating methods relying on new deep learning related encoding
features (e.g. UniRep) for sub-peroxisomal localisation. This study aims to highlight
these feature’s performances and understand how they can contribute to the peroxisome-
related research and proposing insights for an extension to other organelles. Deep
learning embedding methods outperformed the more classical ones when applied to
sub-peroxisomal and sub-mitochondrial classification. The combination of SeqVec and
UniRep as encoding features, showed promising results with several Machine Learning
methods, in particular with Logistic Regression and Support Vector Machines among
the analysed ones. Thus, suggesting to adopt the usage of these protein representations
for sub-organelle classification purposes as a conventional approach. Also, we present
In-Pero and In-Mito, two sub-organelle protein localisation predictors based on our
findings

Introduction

The simple structure of peroxisomes, ubiquitous organelles surrounded by a single
biomembrane, is the reason why we can define a binary classification problem for
peroxisomal proteins. More precisely, its proteins can be found attached to the membrane
of the organelle or in its granular matrix.

Peroxisomes related research is in constant evolution, in accordance with the discovery
of both their metabolic and non-metabolic roles and the association between their
dysfunction and metabolic disorders in humans [1, 2].

Many roles of peroxisome are still unknown. As a starting point, it is relevant to
detect membrane contact site (MCS) proteins [3] and peroxisomal transporters (PT)
[4], to discover new peroxisomal proteins with relevant functions. Both the categories
mentioned, are generally located on the peroxisomal membrane. That justifies our need
to classify which proteins are located on the peroxisomal membrane and which ones are
not.

Although many bioinformatics methods for sub-cellular and sub-organelle localization
are easily findable and accessible [5–8], we do not have this possibility specifically
for sub-peroxisomal localization. Moreover, the recent applications of deep-learning
(DL) approaches to encode protein sequences, has shown promising results related to
sub-cellular classification [9–12] but sub-peroxisomal classification is still not explored.

We here developed and compared different predictors for the sub-peroxisomal local-
ization. Every predictor was trained on peroxisomal protein sequences and based on a
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different method, namely Logistic Regression (LR), Random Forest (RF), Support Vector
Machine (SVM), and Partial Least Square Discriminant Analysy (PLS-DA). In addition,
we compared different sets of encoding methods, also know as features, including DL
based ones. Among them, the combination of UniRep+SeqVec as feature and LR as
method, was the most promising and therefor our choice for the final implementation of
the predictor.

This approach could potentially be applied to other organelles, such as mitochondria.
With mitochondria, we have to consider a multi-class classification problem. This
organelle has two membranes, a space between them and an internal matrix, thus
creating four compartments [13].

Considering the different structure of mitochondria, we finally applied our approach
to sub-mitochondrial localization, realizing a predictor that outperformed most successful
existing classifiers.

Materials and Methods

Datasets

The protein sequences (160) used for building our models were retrieved from Unipro-
tKB/SwissProt (Dic 2019). The protein sequences proposed for the Uniprot annotation
improvement were also retrieved from Uniprot/SwissProt (Jun 2020). The dataset is
available for download at https://github.com/MarcoAnteghini.

Peroxisomal Membrane Proteins

First were selected reviewed, non-fragmented protein sequences, with peroxisomal mem-
brane sub-cellular location (SL-0203), obtaining 327 entries. Clustering was performed
with these sequences using Cd-hit [14], with sequence identity of 40%. The representative
of each cluster was chosen, reducing the dataset to 162 sequences. An additional filtering
process was applied selecting just those proteins with at least 1 publication specific for the
sub-cellular localization (135). Three sequences were finally removed from the dataset,
since not available for the UniRep encoding procedure. The final dataset contains 132
membrane proteins.

Peroxisomal Matrix Proteins

The same procedure was applied to select peroxisomal matrix proteins. In particular,
were selected reviewed, non-fragmented protein sequences, with peroxisomal matrix
sub-cellular location (SL-0202), obtaining 60 entries. The number of sequences was
reduced to 22 after the same clustering procedure and to 19 after selecting just those
proteins with at least 1 publication specific for the sub-cellular localization.
Due to the low number of peroxisomal matrix proteins we performed another advanced
search in Uniprot selecting reviewed, non-fragmented protein sequences, with perox-
isomal location (SL-0204), and not peroxisomal membrane location (SL-0203). 202
non membrane proteins were found. Applying the same filtering procedures as above
described we reduced the dataset to 22 matrix proteins. Merging the two subsets that
presented 13 common entries and clustering for 40% of sequence identity we finally
obtained 28 sequences.

Datasets for sub-mitochondrial protein classification

Both datasets for sub-mitochondrial classification comparison, retrieved from UniProt/SwissProt,
were available from previous works [7, 15] and accessible at http://busca.biocomp.unibo.it/deepmito/datasets/
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and http://proteininformatics.org/mkumar/submitopred/download.html. The two datasets
show an overlap of 238 sequences.

• SM424-18: The dataset was used to build the DeepMito predictor [7]. It consists
of 424 mitochondrial proteins for which the following filtering criteria were applied.
Non-fragment protein sequences with evidence at protein level (1) and experi-
mentally determined subcellular localization in one of the four sub-mitochondrial
compartments: outer membrane, intermembrane space, inner membrane and ma-
trix showing experimental evidence code ECO:0000269 (2). Exclusion of proteins
also localized in compartments other than mitochondria (3). Clustering procedure
using Cd-hit [14], with sequence identity of 40% where the longest sequence from
each cluster were retained (4).

• SubMitoPred dataset: The dataset was used to build the SubMitoPred predictor
[15]. It consists of 570 mitochondrial proteins for which the following filtering
criteria were applied. Non-fragment protein sequences with evidence at protein
level (1) and experimentally determined subcellular localization in just one of the
four sub-mitochondrial compartments (2). Protein length grater than 50 residues
(3). Clustering procedure using Cd-hit [14], with sequence identity of 40% (4).

Features selection

The following features were considered:

• Residue one-hot encoding (1HOT). The protein sequence is represented by a matrix
LX20, where L is the length of the sequence and 20 is the one-hot encoding of the
residue.

• Position Specific Scoring Matrices (PSSM). The protein sequence is represented
by a matrix LX20, where L is the length of the sequence and each amino acid
substitution scores are given separately for each position in a protein multiple
sequence alignment (MSA) after running PSI-BLAST [16] against the Uniref90
dataset (release Oct 2019) for three iterations and e-value threshold set to 0.001.
We used a sigmoid function to map the values extracted from the PSI-BLAST
checkpoint file in the range [0-1].

• Residue physical–chemical properties (PROP). The protein sequence is represented
by a matrix LX10, where L is the length of the sequence and each residue is
encoded using 10 different numerical values representing its physical–chemical
nature [17].

• Unified Representation (UniRep) [10]. The protein is represented by an embedding
of length 1900 (average final hidden array). UniRep is based on a recurrent neural
network architecture (1900-hidden unite) able to learn statistical representations
of proteins from 24 million UniRef50 sequences.

• Sequence-to-Vector (SeqVec) [11]. The protein is represented by an embedding of
length 1024. SeqVec is based on a transfer learning where ELMo [18] was trained
on UniRef50.

We investigated the information content in each feature performing a Principal Compo-
nent Analysis (PCA) followed by k-means clustering with k=2 clusters. The predicted
clusters were compared with the original labels obtaining an overview of the intrinsic
classification capability of the features. In parallel, we performed a forward feature
selection using a Logistic Regression (LR) model. The method consists in iteratively
adding one feature to the set of current best performing features and evaluating the
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performance. The procedure is halted once the performance worsens and the best feature
set from the previous round is retained. This evaluation is based on a 5-fold cross
validation.

Classification methods

The best feature combination was used for training different machine learning (ML)
methods: support vector machine (SVM), random forest (RF), partial least squares
discriminant analysis (PLS-DA) and logistic regression (LR). We used the implementation
available in scikit-learn python library (version 0.22.1) for all the methods except for
the PLS-DA, for which we modified the partial least squares (PLS) regression code,
available on the same scikit-learn version. We evaluated the performance of each model
by performing a 5-fold double cross-validation (DCV) which contains two nested cross-
validation (CV) loops. The inner loop is used to optimize model hyper-parameters
through a grid search (GS), while the outer loop tests the optimized model performance
on a held-out test set. In the inner loop, for each set of hyper-parameters, the average
score across the folds was computed. The best score among these was used to select the
best set of hyper-parameters. Among the hyper-parameters, the class weight (relevant to
handle an unbalanced dataset) was analysed for all the tested methods. The optimized
model was then tested in the outer loop.

Scoring metrics

We use F1 score (macro average), accuracy (ACC), balanced accuracy (BACC), and
Matthews correlation coefficient (MCC) throughout the paper to evaluate the perfor-
mance of the machine learning models. These metrics are defined as follows:

F1 = 2 ∗
PPV ∗ TPR

PPV + TPR
(1)

ACC =
TP + TN

TP + TN + FP + FN
(2)

BACC =
TPR+ TNR

2
(3)

MCC =
TP ∗ TN − FP ∗ FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4)

where:
TP and FP are respectively true positive and false negative,
PPV (positive predictive value) = TP/(TP + FP ),
TPR (true positive rate) = TP/(TP + FN),
TNR (true negative rate) = TN/TN + FP ,
FPR (false positive rate) = FP/(FP + TN)

Results

Features Evaluation

We found that the deep learning embedding methods outperformed the more classical
ones, when applied to sub-peroxisomal classification. Accessing the intrinsic classification
capability of each individual feature as described in section 2.2, UniRep presented the
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F1 PPV TPR

PROP 0.57 0.62 0.57

PSSM 0.54 0.57 0.53

1HOT 0.41 0.50 0.45

UniRep 0.63 0.68 0.65

SeqVec 0.55 0.58 0.48

Table 1. Features intrinsic classifica-
tion capability after PCA and k-means
cluster. Metrics: F1, PPV, TPR (macro
average)

F1

UniRep 0.81

SeqVec 0.79

1HOT 0.62

PSSM 0.60

PROP 0.52

UniRep + SeqVec 0.87

Unirep + PROP 0.66

Unirep + 1HOT 0.57

Unirep + PSSM 0.55

UniRep + SeqVec + PROP 0.73

UniRep + SeqVec + PSSM 0.65

UniRep + SeqVec + 1HOT 0.63

Table 2. Forward Feature Selection re-
sults form 5-fold cross validation. Met-
ric: F1 score (macro average)

best performances in terms of PPV (positive predicted value/precision), TPR (true
positive rate/recall) and F1 score as shown in Table 1. According to our LR model,
the best feature combination was UniRep-SeqVec with an F1 score of 0.87. The best
individual feature was UniRep with an F1 score of 0.81, close to SeqVec with 0.79.
Groups of 3 features showed worse performances. A complete overview of the forward
feature selection process (described in section 2.2) is visible in Table 2, where the results
are reported in terms of F1.

Methods Comparison

Among the inspected ML methods, LR and SVM showed similar metrics, superior
to others. However, the performances obtained with LR are slightly better for all the
considered scores, namely F1, BACC, MCC and ACC. The complete methods comparison
is visible in Table 3 where the results refer to the DCV procedure explained in section
2.3. The F1 (inner) score refers to the inner loop of the DCV while F1 (outer) refers to
the outer loop.

F1(inner) F1(outer) BACC MCC ACC

LR 0.849 0.869 0.867 0.742 0.925
SVM 0.825 0.859 0.863 0.721 0.919
PLS-DA 0.834 0.805 0.802 0.620 0.888
RF 0.794 0.777 0.795 0.570 0.869

Table 3. Methods comparison. Where not indicated the scores refer to the outer CV
loop in the DCV.

Extension to Sub-mithocondrial proteins prediction and compar-

ison with other approaches

We also applied our framework for sub-mitochondrial classification, modifying the
model for a multiclass classification problem. Mitochondria have four possible sub-
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compartments, namely: matrix, internal membrane, intermembrane space and an external
membrane.

Our method outperformed some of the available ones, especially the few designed to
classify all four mitochondrial compartments. Moreover, it shows a balanced capability
to predict the different compartments.

The compared predictors are SubMitoPred [15], DeepMito [7], and DeepPred-SubMito
[19]. For the sake of comparisons, we trained our model with the SM424-18 and
SubMitoPred datasets and performed a Random Split (RS) 5-fold CV as in SubMitoPred
[15]. The results are visible in Table 4.

CV MCC(O) MCC(I) MCC(T) MCC(M)

SubMitoPred RS 0.42 0.34 0.19 0.51
DeepMito RS 0.45 0.68 0.54 0.79
DeepMito CL 0.42 0.60 0.46 0.76
DP-SM RS 0.92 0.69 0.97 0.73
In-Mito RS 0.69 0.75 0.62 0.85

In-Mito DCV 0.67 0.75 0.62 0.85

Table 4. Performance comparison of different approaches. RS indicate a random split
cross-validation, DCV a double cross-validation while CL is a cross-validation performed
confining any local similarity into the same cross-validation set. (O),(I),(T),(M) are
the 4 mitochondrial compartments, respectively: outer membrane, inner membrane,
intermebrane space and matrix

Conclusion

Our predictor can help the research on peroxisomes and mitochondria accurately identify-
ing sub-organelle protein localisation; an example case is shown in section 3.3, suggesting
possible experimental validations. We also underlined the advantages of using deep
learning encoding methods to represent the protein sequences for this task.

The approach initially designed for sub-peroxisomal protein classification (In-Pero),
showed optimal performances, outperforming the state-of-the-art, also for sub-mitochondrial
protein classification (In-Mito). That suggests the utility of an extension of this method
to other sub-organelles in further studies. In particular, our method shows a balanced
capapility in predicting all four sub-mitochondrial compartments.

As the application of DL encoding methods is increasing, we expect to be able to
test new features in the next future and eventually test other methods for sub-organelle
classification. In this work, we mainly focused on some ML strategies for sub-peroxisomal
localisation since DL was relevant for the encoding procedure, but in principle, we can
extend our analysis to DL methods, such as convolutional neural networks (CNN),
recurrent neural networks (RNN) or combination of the two (e.g. CNN-RNN).
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Supporting Information

The sandalone versions of the predictors, the datasets and list of candidates are available
at https://github.com/MarcoAnteghini

Figure 1. In-Pero workflow in three steps: (1) Protein sequence representation via DL
encoding, (2) training the Sub-Pero model with Logistc Regression, (3) sub-peroxisomal
location prediction.

Fungi Metazoa Viridiplanta Protozoa

Matrix 15 9 4
Membrane 29 38 54 11

Table 5. In-Pero dataset composition in terms of different taxonomic kingdoms

CV MCC(O) MCC(I) MCC(T) MCC(M)

DeepMito 10F-CL 0.46 0.47 0.53 0.65
DP-SM 10F 0.85 0.49 0.99 0.56
In-Mito 5F-DCV 0.68 0.73 0.69 0.82

Table 6. Comparison with DeepMito and DeepPred-SubMito (DP-SM) based on the
SM424-18 dataset. (O),(I),(T),(M) are the 4 mitochondrial compartments, respectively:
outer membrane, inner membrane, intermebrane space and matrix.
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Abstract

The study of resistomes using whole metagenomic sequencing enables high throughput identification of 
resistance genes in complex microbial communities, such as the human microbiome. Over recent years, 
sophisticated and diverse pipelines have been established to facilitate raw data processing and annotation. 
Despite the progress, there are no easy-to-use tools for comprehensive visual, statistical, and functional 
analysis of resistome data. Thus, exploration of the resulting large complex datasets remains a key 
bottleneck requiring robust computational resources and technical expertise, which creates a significant 
hurdle for advancements in the field. Here, we introduce ResistoXplorer, a user-friendly tool that integrates 
recent advancements in statistics and visualization, coupled with extensive functional annotations and 
phenotype collection, to enable high-throughput analysis of common outputs generated from metagenomic 
resistome studies. ResistoXplorer contains three modules- the �Antimicrobial Resistance Gene Table� 

module offers various options for composition profiling, functional profiling and comparative analysis of 
resistome data; the �Integration� module supports integrative exploratory analysis of resistome and 

microbiome abundance profiles in metagenomic samples; finally, the �Antimicrobial Resistance Gene List� 

module enables users to intuitively explore the associations between antimicrobial resistance genes and the 
microbial hosts using network visual analytics to gain biological insights. ResistoXplorer is publicly 
available at http://www.resistoxplorer.no/ResistoXplorer.

Introduction

Antimicrobial resistance (AMR) has emerged as a major threat to global public health and the economy [1]. 
Although antimicrobial resistance is a natural phenomenon, the misuse and overuse of antimicrobial agents 
in humans, animals and agriculture have accelerated the development and spread of antimicrobial resistance. 
Consequently, antimicrobials are becoming less effective in the prevention and treatment of infections. In 
addition, the extensive use of antibiotics has resulted in large amounts being released into the environment. 
This is a matter of increasing concern, not only in relation to antimicrobial resistance, but also for the 
potential impact on the ecology of human, animal, and environmental ecosystems [2].

Microbial communities have traditionally been studied using culture techniques. Although valuable, culture-
based strategies have a low-throughput, and can provide an incomplete microbial profile due to the fact that, 
in a majority of environments, only a limited proportion of microorganisms are cultivable. Such limitations 
have been largely circumvented with recent advancements in short-read based high-throughput DNA 
sequencing (HTS) technologies, using either amplicon targeted or whole metagenomic shotgun approaches. 
Amplicon approaches can be used to map both taxonomic and resistome profiles. However, one of the 
limitations is that only genes recognized by the specific primers can be identified. Shotgun metagenomics, 
on the other hand, enables unbiased taxonomic and antimicrobial resistance information. Such technology 
has been shown to provide valuable insights into the natural history of antimicrobial resistance genes 
(ARGs) in humans and nature [3-5], as well as how the resistome develops in early life, and how it can be 
affected by the use of antibiotics [6, 7]. It is also contributing to the identification of ARGs that may cross 



environmental and host boundaries [8], and providing unprecedented knowledge into the large reservoir of 
ARGs in the human, animal and environmental microbial communities [9-14]. Currently, resistome profiles 
from complex and diverse microbial metagenomes are primarily generated using whole metagenome 
shotgun sequencing in which the total DNA extracted from a microbial community is sequenced. The 
resulting DNA fragments can be analyzed using read or assembly-based approaches to characterize their 
resistome composition [15]. These derived sequencing datasets are both large and complex, causing 
considerable �big data� challenges in downstream data analysis.  

The main computational effort in resistome analysis of metagenomic datasets so far has focused on 
processing, classification, assembly and annotation of sequenced reads. This has led to the development of a 
number of excellent bioinformatic pipelines and tools for detecting and quantifying antimicrobial resistance 
genes in metagenomes [15-17]. However, there is still no clear consensus with regards to standard analysis 
pipelines and workflows for high-throughput analysis of AMR metagenomic resistome data [17, 18]. 
Nonetheless, the outputs from most of these pipelines can be summarized as a data table consisting of 
feature (ARGs) abundance information across samples, i.e. resistome profiles, along with their functional 
annotations and sample metadata. For most researchers, the fundamental challenge in data analysis can often 
be centered on how to understand and interpret the information in the abundance tables especially within the 
context of different experimental factors and annotations.

Resistome data analysis can be separated into four main categories: (i) composition profiling- to visualize 
and characterize the resistome based on approaches developed in community ecology such as alpha 
diversity, rarefaction curves or ordination analysis; (ii) functional profiling- to assign antimicrobial 
resistance genes into different functional categories (e.g. Drug class, Mechanism) to gain better insights 
regarding their collective functional capabilities; (iii) comparative analysis- to identify features having a 
significant differential abundance between studied conditions and (iv) integrative analysis- to integrate the 
resistome and taxonomic data to understand the complex interplay and potential associations between 
microbial ecology and AMR. The computational methods and approaches to perform such analysis are fairly 
diverse. The first category of analysis can be more straightforward to perform, but the last three are 
challenging. 

First of all, the metagenomic abundance data is often characterized by differences in library sizes, which 
requires correction. To address this issue, researchers often employ two common normalization approaches 
prior to analysis: subsampling the reads in each sample to the same number (rarefying) or rescaling the total 
number of reads in each sample to uniform sum (using proportions). The former may entail the loss of 
valuable information, while the latter could lead to issues related to data compositionality [19]. In addition to 
uneven library sizes, metagenomics data are also characterized by sparsity, over-dispersion, zero inflation 
and skewed distribution [20, 21]. Such unique features make standard parametric tests and most methods 
established in other omics fields unsuitable to apply directly for comparative analysis. To address these 
challenges, non-parametric permutation-based approaches have been adopted to identify significant features 
in metagenomic abundance data [22, 23]. Even though robust, these approaches are constrained by lack of 
statistical power, as well as inefficiency to model confounding factors, and inability to accommodate 
intricate experimental designs. 

Overall, development of statistical models that account for features of metagenomic data or use of methods 
to transform data to have distributions that fit standard test assumptions is recommended [24]. A variety of 
strategies have propelled empirical development in these directions. For instance, metagenomeSeq algorithm 
incorporates cumulative sum scaling normalization and a zero-inflated Gaussian (ZIG) mixture model to 
reduce false positives and improve statistical power for differential abundance analysis [25, 26]. It has also 
been demonstrated that algorithms developed for RNA-seq data such as edgeR and DESeq2, along with their 
respective normalization methods, outperform other approaches used for metagenomic abundance data [26-
29]. These standard strategies are widely employed, but does not explicitly account for compositional nature 
of whole metagenomic sequencing data [30, 31]. To address this issue, several Compositional Data Analysis 
(CoDA) approaches to analyze sequencing datasets have been recently proposed [32, 33]. ALDEx2 and 
ANCOM are two CoDA methods that integrate log-ratio transformation to explicitly deal with data 
compositionality while performing differential abundance testing [34, 35]. Naturally, the choice of 



methodology depends on the research question, and one may be interested in comparing results obtained by 
different analytical methods. Both standard and CoDA statistical approaches have been implemented as R 
packages. Although flexible, learning R in order to use these methods can be challenging for most clinicians 
and researchers. 

In addition to the challenges described above, analytical steps have another complexity layer represented by 
the wide variety of reference databases to identify and characterize the antimicrobial resistance genes from 
metagenomic data. These differ considerably in the quality of data presented, as well as the scope of 
resistance mechanisms and the type of information provided [15].  This can influence the accuracy of in 
silico characterization of resistome data, which depends substantially on the comprehensiveness and quality 
of reference databases [15, 17, 24]. Typically, resistome profiles are analyzed by mapping ARGs either to 
their respective class of drugs to which they confer resistance (Class-level) or to their underlying molecular 
mechanism of resistance (Mechanism-level). Analyzing resistomes at such high level categories enable 
researchers to gain more biological, actionable, and functional insights together with a better understanding 
of their data. However, these functional levels and categories, along with their classification scheme, vary 
largely between the databases [18]. Additionally, depending upon the database, users need to manually 
collect and curate such information and then generate separate abundance tables for each functional level. 
Hence, collecting appropriate functional annotation information for hundreds of ARGs in resistomes for 
functional profiling and further downstream analysis can be confusing, arduous, time-consuming and error-
prone.

Finally, some AMR reference databases may also provide information regarding the microbial host that 
harbor or carry these reference ARGs. Information about such relationship can be complex as one microbe 
can carry multiple ARGs and single ARGs can in turn be present across multiple microbes. To explore such 
intricated �multiple-to-multiple� relations, one option is to use a network-based visualization method. This 
approach, coupled with suitable functional annotations and enrichment analysis support, would have the 
potential to provide better interpretation of AMR resistance mechanisms and inform on possible 
dissemination routes of antimicrobial resistance genes. It is straightforward to identify key players from a 
network perspective, for instance, by looking for those ARGs that are found in multiple microbes or by 
identifying those microbes that simultaneously contain multiple ARGs of interest. Currently, there are no 
web-based tools that provide such functionality.

Methods

ResistoXplorer is implemented based on Java, R and JavaScript programing languages. The framework is 
developed based on the Java Server Faces technology using the PrimeFaces (https://www.primefaces.org/)
and BootsFaces (https://www.bootsfaces.net) component library. The network visualization uses the 
sigma.js (http://sigmajs.org/) JavaScript library. Additionally, D3.js (https://d3js.org/) and CanvasXpress 
(https://canvasxpress.org/) JavaScript libraries are utilized for other interactive visualization. All the R 
packages for performing back-end analysis and visualization are mentioned in the �About� section of the 

tool. At the start of the analysis, a temporary account is created with an associated home folder to store the
uploaded data and analysis results. All the analysis results will be returned in real-time. Upon completing 
their analysis session, users should download all their results. The system is deployed on a dedicated server 
with 4 physical CPU cores (Intel Core i5 3.4GHz), 8GB RAM and Ubuntu 18.04 LTS was used as the 
operation system. ResistoXplorer has been tested with major modern browsers such as Google Chrome, 
Mozilla Firefox, Safari and Microsoft Internet Explorer.

Results

To address the above mentioned statistical, visual and functional gaps as well as to meet recent advances in 
resistome data analysis, we have developed ResistoXplorer, a user-friendly, web-based, visual analytics tool 
to assist clinicians, bench researchers, and interdisciplinary groups working in the AMR field to perform 
exploratory data analysis on abundance profiles and resistome signatures generated from AMR 
metagenomics studies. The key features of ResistoXplorer include:



� Support of a wide array of common as well as advanced methods for composition profiling, 
visualization and exploratory data analysis;

� Comprehensive support for various data normalization methods coupled with standard as well as 
more recent statistical and machine learning algorithms;

� Support of a variety of methods for performing vertical data integrative analysis on paired datasets 
(i.e. taxonomic and resistome abundance profiles);

� Comprehensive support for ARG functional annotations along with their microbe and phenotypes 
associations based on data collected from >10 reference databases;

� A powerful and fully featured network visualization for intuitive exploration of ARG-microbe 
associations, including functional annotation enrichment analysis support. 

Collectively, these features consist of a comprehensive tool suite for statistical, visual and exploratory 
analysis of data generated from AMR metagenomics studies. ResistoXplorer is freely available at 
http://www.resistoxplorer.no/ResistoXplorer.

ResistoXplorer consists of three main analysis modules. The first is the ARG List module that is designed to 
explore the functional and microbial host associations for a given list of antimicrobial resistance genes 
(ARGs) of interest. The second is the ARG Table module, which contains functions for analyzing resistome 
abundance profiles generated from AMR metagenomics studies. Lastly, the Integration module enables 
users to perform integrative analysis on the paired taxonomic and resistome abundance profiles to further 
explore potential associations coupled with novel biological insights and hypotheses. Figure 1 represents the 
overall design and workflow of ResistoXplorer.

Figure 1: ResistoXplorer flow chart.

Conclusion

Whole metagenomic sequencing studies are providing unparalleled knowledge on the diversity of resistomes 
in the environment, animals and humans, and on the impact of interventions, such as antibiotic use [6, 7, 9-
14]. The analyses are usually exploratory in nature, and require bioinformatic skills, thus increasing costs, 
and preventing full data exploration. Therefore, it is critical to assist researchers and clinical scientists in the 
field to easily explore their own datasets using a variety of approaches, in real-time and through interactive 
visualization, to facilitate data understanding and hypothesis generation. ResistoXplorer meet these 
requirements by offering comprehensive support for composition profiling, statistical analysis, integrative 



analysis and visual exploration. ResistoXplorer will continuously be updated to follow the advancements in 
approaches for resistome analysis.  We believe ResistoXplorer has the potential to find large applicability as 
a useful resource for researchers in the field of AMR.
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Abstract

16S rRNA-gene sequencing allows characterizing bacterial communities, achieving the taxonomic profiling 
of the bacterial population and provides a valuable tool to study bacteria and their role in different health and 
environmental scenarios. The analysis of such sequencing data, however, brings several methodological issues 
that need to be addressed to obtain reliable biological conclusions. Among these, 16S count data are very 
sparse, with many null values reflecting species that are present but got unobserved during the experimental 
process. However, current data work!ows do not include a step to recover that lost information.

In this work, we evaluate, for the first time, the effect of introducing in the 16S data workflow a new pre-
processing step -zero-imputation- to recover this lost information. Due to the lack of zero-imputation methods 
specifically designed for 16S count data, we considered a set of zero-imputation strategies available for other 
frameworks and benchmarked them using several in-silico 16S count data. Additionally, we assess the role of 
zero-imputation compared with count normalization, and their combined effect.

The results show that properly performing zero-imputation can improve the quality of 16S data analyses
workflow ultimately leading to more robust and accurate results.

Introduction

Today, microbial community pro�ling is almost uniquely performed by sequencing the DNA content of the 

community by means of Next-Generation Sequencing technologies, mainly through shotgun sequencing and 
16S rRNA gene sequencing (16S rDNA-seq). The latter is less cost- and resource-demanding, thus achieving 
an increasing growth in election rate as preferred methodology to perform microbiome studies. After
sequencing, 16S microbial community data are typically summarized into large matrices, where the columns 
represent samples and the rows contain operational taxonomic unit (OTU) [1] or amplicon sequence variant 
(ASV) [2] count values, that represent (broadly speaking) bacteria types. 

As pointed out in Brooks et al. [3], the experimental procedure introduces many biases that affect the reliability 
of the values reported in the OTU/AVS matrices. First, amplification introduces several biases due to the 
unequal primers efficiency within and across genomes. Second, different prokaryotic species have different 
number of 16S replicons with varying degree of sequence variability. Third, after the sequencing step the total 
microbial community in each sample is represented by very different amount of sequences (i.e. library sizes), 
sometimes differing by several orders of magnitude. All these elements affect the measured composition of 
the bacteria population in the OTU/ASV matrix, resulting in altered abundances and undetected species [3].

To mitigate the effect of some of the above biases and to avoid misleading results, data should be treated prior 
to perform downstream analysis. Usual analysis workflow starts with a pre-processing step called 
normalization. Normalization is the process of eliminating artifactual systematic biases between samples, 
making possible a direct comparison of species abundance between them or between groups of them.
However, normalization cannot solve or even diminish data biases linked to undetected species and the high 
sparsity (70-95% of zero values) of sequencing count data. 

The present work had the main objective to test and measure the effects of preserving low abundance 
OTU/ASV information, performing an additional pre-processing step for lost-information recovery (zero-
imputation). To best of our knowledge, only benchmarks considering the normalization step are nowadays 
available in the literature, whereas no effort was done so far to test the potential benefits of introducing the 



zero-imputation step. In the present work, a collection of six normalization and six zero-imputation approaches 
was tested and combined in 48 pre-processing pipelines, providing the first results about the effects of
introducing the zero-imputation step in 16S data analysis workflow.

Methods

Datasets

In this study, synthetic data were simulated using
metaSPARSim [4] for their ability to provide a known 
ground truth in terms of sample composition and 
biological (missing species) vs. technical (undetected 
species) zero, thus enabling the assessment of the 
methods performance. Datasets were simulated using 
three simulation settings available in the 
metaSPARSim simulator, describing a range of
biological and technical scenarios (Table 1).
Scenario1 mimics a �medium difficulty� scenario 

characterized by a limited level of sparsity and low 
variability among replicates. Scenario2 describes low sparsity but high biological variability scenario, having 
characteristics similar to data from the Human Microbiome Project [5,6]. Scenario3 mimics a high budget 
experiment with low multiplexing level and thus with little sequencing loss of information. This latter setting 
is meant to test the effects of possible over-imputation.

Bioinformatics tools

Normalization tools were selected among the most widely used or the most recent and promising now 
available. Due to the lack of zero-imputation methods specific for 16S data, tools from other fields were 
considered, including single cell RNA-seq (scRNA-seq) data, microarray data and matrix completion. A total 
of six normalization methods (Total Sum Scaling (TSS) [7], Cumulative Sum Scaling (CSS) [8], edgeR [9],
DESeq2 [10], scran [11] and GMPR [12]) and six zero-imputation tools (DrImpute [13], scImpute [14],
LLSimpute [15], Low-Rank [16] and zCompositions [17], the latter one used in both �CZM� and �SQ�

modes) were included in this study. The tools were combined to form 48 different pre-processing pipelines

(6 normalization-only, 6 imputation-only, 36 normalization+imputation).

Evaluation criteria

The adopted benchmarking framework, represented in Figure 1, 
involved ground truth data jointly with raw and pre-processed data. 
metaSPARSim was used to simulate taxa abundances sampled from 
the biological niche of interest before sequencing (ground truth) and 
after sequencing (raw data). Then, raw matrices were pre-processed
with all the 48 pipelines. Finally, ground truth and pre-processed data 
were used to assess pipelines performance as explained in the 
following.

Total sparsity

As a !rst assessment metric, the pipelines were evaluated for their 
ability to reproduce original data sparsity.  Each pipeline results were 
compared to the ground truth in terms of percentage of zero counts, 
i.e. the ratio between the number of zero counts and the total number of count matrix entries.

Relative abundance profile

To assess the ability of recovering "true" (ground truth) proportional abundances, two different metrics were 
considered: Symmetric Mean Absolute Percentage Error (SMAPE) and Aitchison�s distance [18]. The !rst 

one is a quantitative metric based on percentage (or relative) errors and it was chosen as an alternative to the 
classical relative error because of its suitability to heavily sparse data. The second measure, i.e. Aitchison�s 

Scenario1 Scenario2 Scenario 3

Type Animal gut Human Food
Groups 14 8 12
Samples 140 80 120
Replicates 10 10 10
Features 3326 758 1140
Sequencing 

depth (range)

16347-
995050

2763-
97612

30165-
293285

Sparsity level 75.56% 67.91% 94.34%

Figure 1. Benchmarking framework

Table 1. Simulated datasets used in this study



distance, is a distance measure that accounts for the compositional nature of sequencing data [18]. One side 
Mann-Whitney paired U-test (p-value < 0.05 after Benjamini-Hochberg FDR correction [19]) was used to 
identify pipelines that achieved SMAPE and Aitchison�s distance significantly lower compared to the ones 
between ground truth and raw data. In addition, effect size calculation was used to measure the magnitude of 
possible signi!cant differences between distributions.

Impact on bacterial diversity

One of the most important aspects to look at when performing a microbiome analysis is the population 
diversity, usually measured with the so-called diversity indices, measuring the species diversity in sites 
belonging to a niche (alpha diversity) and the differentiation among those sites (beta diversity). In this work, 
�ve alpha and two beta diversity measures were considered to assess the effect of each pre-processing 
pipeline on microbial community composition, with the aim of identifying the pipelines that would preserve 
the most the real structure of the golden standard data.

In terms of alpha diversity, richness indices (observed richness), evenness indices (Pielou index) and diversity 
indices (Shannon entropy [20], inverse Simpson index [21] and Tail statistic [22]) were used. The impact of
different pipelines were measured by looking at the consequences in terms of detected differences in alpha 
diversity values distributions across group of samples (one-sided Mann-Whitney U-test, p-value <0.05), as 
done in practice when using alpha diversity indices. Then, we performed the same procedure on ground truth 
data, thus measuring the true differences in terms of alpha diversity present in the data. Last, we computed the 
percentage of detected differences that were wrong (i.e. not detected in ground truth data) and used such 
percentage as a measure of error. 

In terms of beta diversity, Whittaker beta diversity [23] and Bray-Curtis dissimilarity [24] were used. The 
!rst dissimilarity was then used to build a distance matrix on which Non-metric Multidimensional Scaling 
(NMDS) dimensionality reduction was performed to assess spatial distribution of samples, whereas Whittaker 
dissimilarity values were graphically represented using heatmaps.

Differential abundance analysis

Differential abundance (DA) analysis is a fundamental step in each microbiome study. In this work, we chose 
to perform this analysis using a non-parametric Mann-Whitney U-test. The Mann-Whitney test was preferred 
in this evaluation framework in order not to add further potential biases to the results, since each existing DA 
tool has its own assumptions and underlying model.

In particular, Mann-Whitney U-test was performed to identify DA features (p-value <0.05 after Benjamini-
Hochberg FDR correction) across different groups in each scenario, running the analysis on the ground truth, 
the raw and the pre-processed datasets. The consistency between results on the ground truth and on each of 
the other datasets was measured using Jaccard index [25]:

��������
�� =

 !�� " #��

 !�� $ #��

where  !��%is the set of DA features for conditions a and b of ground truth data and #�� is the correspondent 
set of features identi�ed as DA in the generic raw or pre-processed dataset D.

For each dataset, we obtained different Jaccard index values (one for each pairwise group-group comparison).
To test for (possible) improvement in DA consistency obtained using raw data or pre-processed data with 
respect to ground truth, a one-sided, paired Mann-Whitney test was performed between Jaccard index values 
obtained using raw and pre-processed datasets.

Results

Total sparsity

In terms of sparsity, LLSimpute, LowRank and zCompositions (both SQ and CZM), tended to heavily 
underestimate data sparsity in all the simulated datasets, recovering the majority (LLSimpute and LowRank) 
or also the totality (zCompositions) of zero counts in combination with all normalization approaches. On the 
contrary, scImpute and DrImpute pipelines recreated true sparsity very well, slightly overestimating or 
underestimating the true zero counts, depending on the dataset. As an example, Table 2 shows the results in 
terms of sparsity for Scenario 2. Please note that normalization-only pipelines do not alter the sparsity of the 
data.



Relative abundance profile

To evaluate the ability of different pipelines in recovering 
data information, SMAPE and Aitchison�s distance 

between the ground truth and the different pipelines outputs 
were calculated on sample proportional abundances. As for 
total sparsity metric, normalization-only pre-processing 
pipelines inherently did not act on the present metrics, thus 
obtaining values equal to the raw matrix ones. To 
summarize the results in term of imputation choice, first the 
median of SMAPE and Aitchison�s distance were 

calculated for each pipeline as an aggregate measure, and 
then pipelines based on the same imputation method were 
combined, computing mean and standard deviation of such 
aggregated measure. As an example, Table 3 shows the 
results for Scenario 2. scImpute and DrImpute pipelines 
obtained the best results in terms of SMAPE on Scenario 1,
with scImpute performing well even in Scenario 2. Regarding 
normalization-only pipelines, they always performed better 
than LLSimpute, LowRank, and zCompositions in terms of 
SMAPE. In terms of Aitchison�s distance, some pipelines 

containing DrImpute and zCompositions achieved a better 
performance than raw/normalized-only data on Scenario 1 and 
2. Normalization-only pipelines achieved also a lower 
Aitchison�s distance compared to LLSimpute and LowRank, 

while they resulted in a higher Aitchison�s distance compared 

to some zCompositions pipelines in Scenario 1 and 2. A special 
case was observed for Scenario 3, where all the pipelines 
involving zero-imputation performed worse than 
raw/normalized-only data in terms of both SMAPE and 
Aitchison�s distance.

Impact on bacterial diversity

Alpha diversity indices were used to evaluate the impact of the different pipelines in terms of consequences 
on a statistical testing procedure (see Methods). Figure 2 shows a subset of the results on Scenario 2.

In terms of richness, scImpute pipelines achieved comparable or better results than normalization-only 
pipelines. The remaining zero-imputation pipelines always performed worse than normalized-only data,
except for the good performance of DrImpute pipelines in Scenario1.

In terms of evenness (Pielou index), scImpute pipelines showed good results in Scenario1 and 2, while they 
performed worse than normalized-only data in Scenario 3. Again, the remaining imputation pipelines always 
performed worse than normalized-only data, except for DrImpute pipelines in Scenario1.

In terms of Tail diversity index, scImpute, DrImpute and zCompositions_SQ pipelines were the only zero-
imputation pipelines performing comparable or 
better than normalization-only pipelines in 
Scenario 1 and 2. None of the zero-imputation 
pipelines improved the results in Scenario 3
compared with normalization-only pipelines.

In terms of Shannon and iSimpson indices, 
zCompositions pipelines performed comparable 
to normalization-only pipelines in all the tested 
datasets. scImpute and DrImpute achieved
variable performance, being comparable to 
normalization-only pipeline in some dataset and 
slightly worst in others.

Sparsity (%)

Data/Pipeline Mean SD

Ground truth 56.61 0
Raw & Normalization-only 67.91 0
scImpute 55.84 0.004
DrImpute 42.32 0
LLSimpute 23.31 1.63
LowRank 2.09 1.82
zCompositions_SQ 0 0
zCompositions_CZM 0 0

Imputation SMAPE

Mean (SD)
Aitch distance 

Mean (SD)
Raw - None 15.49 (0) 23.75 (0)
DrImpute 28.35 (2.35) 24.28 (2.27)*
scImpute 12.06 (0.01)** 25.11 (0)
LLSimpute 79.95 (1.84) 81.89 (0.68)
LowRank 70.10 (0.44) 44.26 (12.24)
zCompositions_CZM 70.16 (1.46) 28.68 (4.65)* 
zCompositions_SQ 71.68 (0.55) 23.36 (0.18)*

Figure 2. Results on alpha diversity indices (Richness, Pielou and 
Tail) for Scenario 2 in terms of percentage of group-group 
comparisons disagreeing with the ground truth (the lower the better). 
Results are aggregated according to the imputation method used in 
the pipelines.

Table 3. SMAPE and Aitchison�s distance between 

the ground truth and different pipelines for Scenario 2.
Imputation strategies that achieve a statistically 
significant improvement with any normalization 
method are indicated with �**�. Imputation strategies 

that achieve a statistically significant improvement 
only with some normalization methods are indicated 
with �*�. 

Table 2. Count matrix sparsity for Scenario 2. Pre-
processed datasets results were aggregated according 
to the zero-imputation method included in the
pipeline; for each, the mean and standard deviation 
over different normalizations are shown. 



As previously introduced, beta diversity indices are used to measure dissimilarity between samples, in order 
to collect the ones that resemble to each other and divide the whole into different groups. With this aim, Bray-
Curtis dissimilarity and Whittaker index were calculated to show different aspects of the considered matrix.
Figure 3 and 4 show the results of these two metrics of some pipelines on Scenario 2.

Both in terms of Bray-Curtis dissimilarity and Whittaker index, scImpute and DrImpute pipelines performed
comparable or better than normalization-only pipelines in re-join sample belonging to the same group and 
dividing different groups. Pipelines including the remaining imputation methods performed worse than 
normalization-only pipelines.

Differential abundance analysis

A test for change in differential abundance analysis results was performed as a measure on each pipeline ability 
to recover original data structure. A subset of the results for Scenario 2 is shown in Figure 5.

About normalization-only pipelines, they always improved the results compared to use raw data on Scenario
1 and 2 except for scran normalization, while on Scenario 3 scran was the only normalization method that
improved the results of DA 
analysis compared with using raw 
data. scImpute pipelines always 
improved the results compared to 
raw/normalized-only data on all the 
datasets. DrImpute pipelines 
performed better than 
normalization-only pipelines in
datasets 1 and 3. In the large 
majority of pipelines and datasets, 
the other imputation methods did
not improve the results of DA 
analysis compared with the use of 
raw data.

Figure 4. Whittaker dissimilarity
on Scenario 2. For some example 
pipelines, the heatmaps show the 
beta diversity values computed 
from each pair of samples within 
the dataset. The top-left heatmap 
shows the true structure of the data 
in terms of beta diversity.

Figure 3. Bray-Curtis dissimilarity
on Scenario 2. For some example 
pipelines, the plots show the Non-
metric Multidimensional Scaling 
(NMDS) dimensionality reduction 
on beta diversity values. The top-
left plot shows the true structure of 
the data in terms of beta diversity. 
The colours encode the different 
groups within the datasets.

Figure 5. Boxplot of Jaccard indices on Scenario2 for some example pipelines.
Distributions of Jaccard index values that result statistically lower than Jaccard 
index values calculated on raw data are indicated with the symbol �*�, followed by 

the interpretation of Cohen�s d effect size (VS: very small, S: small, L: large). The 
vertical dashed line indicates the median Jaccard index value of raw data.



Discussion and conclusion

Our analysis indicates that a properly performed zero-imputation can improve the results of a 16S data analysis 
workflow in terms of sparsity, relative abundance profile, bacteria diversity (alpha/beta) analysis and 
differential abundance analysis. For all the benchmark datasets and assessment scores used in this work, it
always exists at least one zero-imputation pipeline that performed comparably or better than using 
raw/normalized-only data. The only exception is represented by Scenario 3, were no zero-imputation pipeline 
improved the results in terms of relative abundance profile compared with normalized-only data.

Zero-imputation showed very often higher impact than normalization in improving the quality of the results. 
The tested normalization methods showed comparable results among each other, with no normalization 
method that clearly outperformed the others. This fact is confirmed even when normalization was applied 
prior to zero-imputation, resulting in negligible differences in the final quality of the pre-processed data. 

Moreover, the results highlighted that the choice of the imputation tool has a major role in the quality of pre-
processed data. Indeed, some zero-imputation tools performed even worse than using raw or normalized-only 
data, and the performance were variable across the 3 test datasets. The variable and suboptimal performance 
of some tools are not surprising if we consider that none of the tools used in this study was designed 
specifically for imputation of 16S data. In particular, zCompositions, LLSimpute and Low-Rank recover the 
totality/majority of zeros, thus not differentiating biological zeros (real zeros) from technical zeros (missing 
data), generally producing worse results compared to using raw/normalized-only data. Not surprisingly, the 
best performing imputation tools were the ones developed for single cell RNA-seq data (i.e. scImpute and 
DrImpute), suggesting that some characteristic/biases of 16S can be modelled/tackled as the ones present in 
scRNA-seq data. This also suggests that zero-imputation tool specifically designed for 16S data would 
probably achieve even better performance, thus encouraging the development of such tools and further studies
about zero-imputation of 16S count data.
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Abstract 
Synthetic biology aims to engineer sophisticated biological functions in live cells by designing increasingly complex genetic 

circuits. Therefore, researches are constantly looking for innovative architectures and regulatory logics mechanisms to be 

adopted in rational design of such synthetic devices. In this work, a novel approach to design and implement multi-input logic 

gates had been introduced. Specifically, it has been studied the interaction between two different transcriptional regulation 

mechanisms (i.e. transcription factors and CRISPR interference) which compete for the modulation of the same promoter. As a 

test bed, a NOR logic gate based on this architecture had been implemented and characterized in vivo; two alternative 

mathematical models for the co-regulation had been compared, unveiling the actual mechanism of interaction between the two 

regulators. We believe that the approach and general mathematical structure used is generalizable for the description of 

different types of multi-modal genetic circuits. As an example, a NIMPLY logic gate exploiting the same multi-input regulatory 

system had been finally designed and simulated in silico. 

1 INTRODUCTION 
One of the aims of Synthetic biologists is to build complex genetic programs through the interconnection of pre-characterized 

biological parts, as it happens for other engineering fields such as electrical components in electronics or scripts and functions in 

computer engineering (1). Among others, transcription factor (TF)-based logic gates are one of the simplest and most common 

biological devices used to design genetic circuits (2); however, the use of such devices is hampered by the lack of available 

orthogonal and reliable TF/regulated promoter pairs. 

In such framework, the introduction of the increasingly popular CRISPR technology, in the catalytically inactive version called 

CRISPR interference (CRISPRi), have enabled the design of a virtually infinite amount of orthogonal NOT gates (3), due to its ease 

of design and extreme efficiency. Indeed, while a traditional TF-based regulation system is typically implemented through a 

constitutive expression of a regulator protein � activated or inhibited upon binding of a specific molecule �, CRISPRi systems 

require the expression of the protein dCas9 along with a guide RNA (gRNA) which can be designed ad hoc. The latter molecule, 

once bound to dCas9 via a specific binding region, form a complex that can in turn bind a DNA tract correspondent to a second 

sequence encoded by the gRNA; this leads to the impossibility for the RNA polymerase to read the downstream nucleotide 

sequence, hence it acts as a universal programmable transcriptional repressor. While both the transcription regulator 

mechanisms have been deeply studied and exploited for myriads of synthetic biological systems (4), for the best of our 

knowledge, the possible interaction between CRISPR interference and transcription factor competing for the same binding 

region has not been studied yet. This possibility of usage would enable to upgrade known genetic architectures through the 

introduction of CRISPRi in circuits already bearing TF-based regulation; moreover, through a proper modeling approach, such 

novel mixed architectures could be exploited to design multi-modal gene regulation mechanisms for synthetic circuits in a 

predictable manner. In this work, the functioning of such mixed interactions has been investigated through new experimental 

data and modelling approaches, and this architecture has been used to build new synthetic circuits implementing multi-input 

logic functions. 

2 METHODS 

2.1 CIRCUIT DESIGN 
As a proof of concept, a NOR gate has been conceived exploiting the TF and CRISPRi mixed interactions. Most of the parts 

adopted to assemble the following circuit have been previously characterized in other works of our groups, and further details 

can be found in (5), (6), (7). The system, as shown in Figure 1, is composed by a set of four expression devices. The first one is 

the dCas9 constitutive expression cassette, which is a device expressing an amount of dCas9 sufficient to fully repress the 

transcription from an high copy plasmid � in presence of a proper amount of gRNA � without toxic effects nor providing 

metabolic burden to the cell (6). The second one is an inducible expression cassette for a gRNA designed to bind the promoter in 



the Target plasmid, which expression is driven by the promoter Plac1 tuned through the molecule IPTG; the latter molecule is 

the first input of the system. These two first cassettes � borne in a medium and a low copy plasmid, respectively � implement 

the CRISPRi system, designed and tuned to repress a synthetic promoter developed in (7), called J119H, driving the expression of 

the reporter gene of a red fluorescent protein (RFP) encoded in the high copy Target plasmid. The last expression cassette 

encodes the LuxR protein, constitutively expressed, which can bind the HSL molecule and the complex can in turn bind the core 

of the J119H promoter, which includes a binding site for the complex, and thus repress its transcriptional activity.  

 

Figure 1 Circuit schema. The circuit is composed by three plasmids; the upper one is a low copy plasmid carrying the two repressor components 

which are an IPTG-inducible expression cassette for the gRNA and a constitutive expression cassette for LuxR. The dCas plasmid bears a 

constitutive expression cassette for the dCas9 protein which binds the gRNA to repress the J119H promoter encoded in the Target plasmid. The 

latter plasmid can also be repressed by the complex formed by the binding between LuxR and the inducer molecule HSL, implementing a NOR 

gate, as shown in the table on the upper left. 

Considering the two molecules IPTG and HSL as the tunable input of the system, the circuit implements a NOR gate, providing 

the synthesis of the reporter gene only in absence of both the inducers. Control circuits (not shown) were also built to facilitate 

the parameter estimation to decouple the single contribution of each repression mechanism exerted on the Target plasmids.  

2.2 EXPERIMENTAL SETUP 
The system was designed and implemented in E. coli Top10 strain and genetic parts were assembled through BioBrick Standard 

Assembly (8) using genetic parts already available in our laboratories, re-adapted from the genetic circuits used in a previous 

work (6), from which the same experimental characterization setup was adopted.  

For quantitative experiments, cells were first streaked on selective LB agar plates from glycerol stocks and grown overnight (~16 

h); a second overnight incubation in selective M9 minimal medium supplemented with glycerol followed. IPTG was provided to 

this liquid culture at the indicated concentrations due to the slow dynamics of its induction. Lastly, cell cultures were 100-fold 

diluted in 96 well plates, in selective M9, adding the proper IPTG and HSL amount when needed. 

To monitor the growth and the reporter gene synthesis, measurements of absorbance at 600nm and red fluorescence signal 

were performed using a Tecan Infinite F200 plate reader on the growing liquid cultures, taking measurements every 5 minutes 

and analyzing data with Matlab (MathWorks) and Microsoft Excel. The acquired time series were background-subtracted and 

the synthesis rate per cell (i.e. the average time derivative of the fluorescence signal normalized on the optical density during 

the exponential growth phase of the cell culture) was adopted as final outcome (9). 

2.3 MODELING FRAMEWORK 
A key aspect of the study has been the identification of a modeling setup that properly described molecular interactions in the 

two mechanisms (TF and CRISPRi) repressing the same promoter. To this aim, two alternative binding mechanisms were 

considered: an exclusive binding in which only one repressor can bind, and an independent binding under the hypothesis that 

more than one repressor can bind the target promoter. 

2.3.1 Exclusive binding 

In exclusive binding, the basic assumption is that only one of the two mechanisms exerts its repression at once, meaning that 

the promoter can be repressed either from the dCas9:gRNA complex or the LuxR:HSL one but only one repressor per time. This 

assumption is based on the possible competition between TF and CRISPRi complex due to their footprint. 

The associated kinetic model can be expressed as follows: 

 
1 In absence of IPTG induction, the promoter is fully repressed by the protein LacI which is constitutively expressed; the latter 

can be bound by IPTG, which acts as in indirect activator of Plac, since the higher is the molecule induction, the lower is the 

amount of unbound LacI able to bind and repress the promoter. 

CRISPRi 

TF 

LuxR 



 
Where C1 and C2 are the dCas:gRNA and LuxR:HSL repressor complexes, respectively; C3 and C4 are formed when C1 and C2 

complexes bind the target DNA, respectively. 

By considering the system at the steady state for the complexes due to their fast binding dynamics compared to the RFP 

maturation, the following mass conservation laws are considered on DNA, LuxR and dCas: 

 
The following lumped parameters can be derived: 

 

 
With: 

 
And: 

 
Assuming the absence of basic promoter activity in the repressed state, so that kT3=0 and kT4=0 and therefore bRFP and gRFP 

null, the synthesis of the measurable outcome RFP can finally be written as: 

 

 
Which is a model with 5 parameters. 

2.3.2 Independent binding 

Assuming the independence of the binding for the two repressor complexes, a new species (C5) is considered, deriving from the 

binding of C3 and C4 with LuxR:HSL and dCas:gRNA, respectively.  

The associated kinetic model can be therefore expressed as follows: 



 
Where the parameters have the same meaning as in the exclusive binding model with the addition of C5 that represents the 

complex corresponding to the binding of both the dCas:gRNA and the LuxR:HSL complexes with the target promoter, at once. 

By considering the system at the steady state for the complexes, the mass conservation equations on DNA, LuxR and dCas are: 

 
The following lumped parameters can be derived: 

 
With: 

 
And: 

 
Assuming the absence of basic promoter activity in the repressed state, such as kT3=0 and kT4=0 and therefore bRFP and gRFP 

null, the synthesis of the measurable outcome RFP can be written as: 

 



 
Which is a model with 6 parameters with an additional term at the denominator which describes the effect of a simultaneous 

co-repression exerted by the two mechanisms.  

 

This can be explained by the fact that during the parameter estimation procedure, the lower bound of the ����� in the 

independent model had been set to 1, being ����� = ���� + 1; setting ���� = 0 the models results nested and therefore the 

bigger model does not add enough information to outperform the smaller one. Lastly, it is worth to notice that both the models 

can be reconducted to Hill-like structures (procedure not shown) and, by including in the analysis a proper set of control 

experiments to decouple the contributes of each single repressor, they are a-priori identifiable.  

3 RESULTS  
As shown in   

Figure 2, the circuit behaves as expected, implementing a NOR logic with respect to the two input molecules IPTG (reported on 

the x-axes) and HSL (color coded). Indeed, for both the molecules, an increment in the induction is associated with a decrease in 

the RFP, which is the output signal. It is worth to notice that the system can be completely repressed even in presence of only 

the LuxR regulation system fully induced with HSL (i.e. control circuit with a non-targeting gRNA), despite data are not reported 

for the sake of clarity of the figure. 

   
Figure 2 Fitting with Exclusive binding model. Experimental data are represented as average on at least 3 biological replicates with stars while 

model predictions are reported with dashed lines. The purple line, correspondent to the control circuit without TF is overlapped by the red one, 

for which the TF is completely uninduced. The cyan line represents the average on several samples of the control circuit bearing a non-targeting 

gRNA, for several IPTG values. Error bars represents the 95% confidence interval of the mean. 

3.1 SYSTEM CHARACTERIZATION AND PARAMETER ESTIMATION 
The study focused on the evaluation of the hypotheses of exclusive or independent binding. An additional hypothesis was the 

adoption of a Hill-like function to describe the gRNA production, being adopted in other previous works. Indeed, gRNA 

expression is driven by the well characterized IPTG-inducible promoter, which transfer function has been reported to fit with a 

Hill equation (5). The parameters of this latter equation had been estimated from previously acquired data (not reported). 

Then, model parameters were estimated via Matlab lsqnonlin function for both the model, as reported in Table 1. 

Table 1 Parameter estimation 

Model � !"!  #$ %& '  %( )*+,- MSE 

Exclusive 9.277 34.801 1.546 2.680 1.303 - 0.443 

Independent 9.002 36.280 1.823 1.995 3.801 1.418 0.678 

As a metrics to evaluate which model better described the system, the mean square error (MSE) was adopted. It is worth to 

notice that, despite this index does not enable a fair comparison between models with different number of parameters, in this 

case the less complex model (Exclusive binding) provides an better MSE. The results of the model fitting using the chosen 

Exclusive binding model are reported in Figure 2. 

 



3.2 PREDICTION OF ALTERNATIVE LOGICS 
Lastly, the implemented model has been used to study the theoretical implementation of another logic gate that is a NIMPLY 

gate. The hypothetic circuit would differ from the one in Figure 1 in only two components that are the promoter driving the RFP 

and the associated gRNA. Indeed, by using the Plux promoter [REF] which is activated by the LuxR:HSL complex, the logic of the 

TF gate is inverted. It is possible to demonstrate that, by using the Exclusive binding model, the RFP synthesis can be in this case 

written as: 

 
With H� = ����� !"!#$�%& '

()*)
+,-./0

. 

Simulation of the expected behavior are reported in Figure 3, with all the parameters set to previously estimated ones, except 

for 12  that represents the affinity between the gRNA and the promoter, which is a-priori unknown since it depends on the gRNA 

sequence. 

 

Figure 3 Prediction of a NIMPLY logic gate. The system differs from the previous one in the activation of the target promoter via LuxR:HSL 

complex. Simulations of the system output are provided for different values of 12 .  

4 DISCUSSION 
Synthetic biologists are in a constant research of new tool to develop genetic circuits implementing ever more complex 

functions in living cells, with eventually a predictable behavior. This research focused on unveiling the interaction between 

CRISPRi and transcriptional factors in simultaneously regulating the same promoter, to enable rational design of multimodal 

NOR gate in synthetic genetic circuit. The case study of LuxR-HSL system has been exploited as a model. First, it has been 

demonstrated that such architecture is effective, and the intended Boolean logic can be fully achieved by using the desired 

combined mechanism.  The data collected from the characterization of the genetic constructs implemented ad-hoc to realize the 

NOR gate were hence used to develop a the mathematical model that best represented the underlying biological interactions; in 

particular, two models had been implemented starting from the several biological assumption adopted in the circuit design, 

which were an exclusive and an independent binding models for the two transcriptional regulators to the shared target 

promoter (i.e. dCas9:gRNA complex and LuxR:HSL transcription factor). From the model�s parameter estimation it was possible 

to demonstrate that the interaction between the two regulators is more likely to be an exclusive one, in which the target DNA 

can be bound only to one of the two complexes at the same time. This result is in accordance with a biological hypothesis of 

physical mutual obstruction of the repressors once bound, due to the proximity of the two binding sites and the considerable 

size of the complexes.  

The derived model has been finally used to simulate a NIMPLY logic gate, implementable through a LuxR:HSL inducible promoter 

instead of the previous J119H; the results shows that the response of the system could qualitatively match the required Boolean 

logic, despite a proper tuning of the expression levels might be required to achieve a more ideal on/off response to the inducers 

to reach a fully dichotomy in the system response.  

With respect of the state of art, a novel architecture for genetic logic gates had been proposed, which exploit the interaction 

between two transcriptional repressors; a multi-input logic gate has been implemented in vivo and a mathematical model has 

been developed. The approach and general mathematical structure used is generalizable for the description of different types of 

multi-modal genetic circuits. 
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Abstract 

 

Menin protein sequence consists of 615 amino acids, coded by the MEN1 gene, located on the 

chromosome in position 11q13 and made up of 10 exons. Mainly present at the nuclear level, menin is an 

extremely versatile scaffold protein from a functional point of view, such as to be involved in transcription 

regulation, genome stability, DNA repair, signaling and cell division. 

Mutations in the MEN1 gene are responsible for the onset of a rare autosomal dominant disease, multiple 

endocrine neoplasia type 1 (MEN1), characterized by endocrine alterations that must be present in a 

combined manner for at least two of the following conditions: parathyroid glands, anterior pituitary gland 

and neuroendocrine tumors of the gastro-entero-pancreatic tract (GEP-NET). These conditions may occur 

in a non-hereditary form with no family history of MEN1 (sporadic MEN1) or in several members of a 

family (familial MEN1). Adrenal cortical tumors, carcinoid tumors and skin lesions such as facial 

angiofibromas, collagenomas and lipomas can also be associated. 

We investigated the structural properties of menin and the potential effects of known mutations. The 

results are deposited in dedicated data base and can be explored by a web interface. A comprehensive 

classification of the effects of single mutations is presented in the poster. 
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Abstract 

The explosion of omics technologies offers challenging opportunities to identify molecular agents and 

processes that may play relevant role in programmed cell death. They can support comparative 

investigations, in one/multiple experiments, exploiting evidence from one/multiple species. We here propose 

a pipeline to considered gene expression data from induction of programmed cell death and stress response 

in Homo sapiens and compared the results with Saccharomyces cerevisiae gene expression during the 

response to cell death. The aim was to identify conserved candidate genes associated to human or yeast cell 

death, favored by crosslinks based on orthology relationships between the two species. We identified 

differentially expressed genes, pathways that are significantly dysregulated across the treatments and 

characterized genes among those involved in induced cell death. We investigated on co-expression patterns 

and identified novel genes that were not expected to be associated to death pathways that have a conserved 

pattern of expression between the two species. The pipeline that we designed can be further exploited 

expanding the number of experiments and/or the reference species to consider and, as a consequence, it can 

result in additional conserved genes involved in cell death. These efforts can contribute to the knowledge on 

cell death molecular pathways in distantly related species, and paves the way to novel discovery in the field, 

also contributing with new key targets for cancer therapy. 
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Abstract

Microalgae have shown to be excellent producers of bioactive compounds, such as lipids, vitamins, as well as 

defence metabolites which have also shown possible applications for managing human pathologies. Many 

microalgae produce toxic compounds with negative impacts on human and environmental health. The 

dinoflagellate Alexandrium tamutum was discovered for the first time in the Gulf of Naples, and it is not 

known to produce saxitoxins. However, a clone of A. tamutum from the same Gulf showed toxicity on 

predators and anti-proliferative activity on human cells. A. tamutum RNA-seq approach was used for in silico

identification of transcripts that can be involved in the synthesis of toxic compounds (Both in control and

phosphate starvation condition, to induce toxin production). Results showed the presence of three transcripts 

related to saxitoxin synthesis (sxtA, sxtG and sxtU), and others potentially related to the synthesis of additional 

toxic compounds (e.g., 44 transcripts annotated as �polyketide synthase�). These data suggest that even if this 

A. tamutum clone does not produce saxitoxins, it has the potential to produce toxic metabolites, in line with 

the previously observed activity. These data give new insights into toxic microalgae, toxin production and 

their potential applications for the treatment of human pathologies.
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Abstract 

Alternative splicing (AS) is an important molecular mechanism regulating gene expression and is involved 

in a plethora of cellular process like proliferation, differentiation and development. This fine-tuned 

molecular mechanism enables a tightly regulated generation of multiple mRNA and protein products from 

the same gene, thus allowing an increase in the complexity and diversity of the proteome content of the cell. 

To date, a number of computational approaches have been developed to identify and quantify differentially 

spliced genes from RNA-seq data, but a comprehensive comparison or benchmarking of these approaches is 

lacking. In this study, 6 different tools were used to identifying differentially spliced genes and were 

evaluated for consistency and reproducibility, precision, recall, false discovery rate and functional 

enrichment analysis. The selected tools represent three different methodological categories: isoform-based 

(IsoformSwitchAnalyzeR, DEXSeq), event-based methods (rMATS, SUPPA2) and junction-based 

(PSIsigma, Whippet). Overall, all the junction-based methods (PSIsigma, Whippet) and the event-based 

method (rMATS) scored well on the selected measures. Using a golden standard dataset, of the 6 tools 

tested, the junction-based methods performed generally better than the isoform-based and event-based 

methods. However, overall, the assessment of different data analysis tool performance was dependent on the 

sequencing depth, number of samples and the types of the analysed dataset. We foresee that our study will 

help in selecting the best approach to analyse differential AS from RNA-seq data.�
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ABSTRACT

We here propose an integrated bioinformatics approach to investigate on the molecular mechanisms of a  biological 

process that had no previous characterization: the response to self (homologous, i.e. DNA from the same or closely 

related species) and nonself (heterologous, i.e. DNA from phylogenetically unrelated species) extracellular DNA.In 

particular,  in this study we analysed the early response after exposure to extracellular self- and nonself-DNA in the 

plant model Arabidopsis thaliana by performing a whole-plant trascriptome profiling by RNA-seq. Our aim was to 

shed light on the cellular molecular mechanisms activated following the treatment with exDNA.

The resulted highlighted a different response to self and nonself DNA.

INTRODUCTION

In 2015, Mazzoleni and coworkers (1) demonstrated that fragmented extracellular DNA (exDNA) triggers a a 

concentration dependent and species-specific inhibitory effect on root growth and seed germination in plants, and it 

was proposed this could contribute to the phenomenon of plant�soil negative feedback (2). This discovery was also 

extended to organisms of other taxonomic groups including microbes, fungi, protozoa, and insects (3). Despite some 

hypoteses (4,5), still little is known about the cellular sensing and molecular mechanisms underlying plant growth 

inhibitory effect of extracellular self-DNA, as well as plant response to extracellular nonself-DNA.

METHODS

The experimental design included the following treatments after three different stages within 16 hours: exposure to 

sterile distilled water, to self-DNA, to nonself-DNA (Clupea harengus). The RNA extracted was sequenced by the 

Illumina Hiseq2500. The cleaned reads were mapped to the Arabidopsis nuclear and cytoplasmic genomes (version 

TAIR 10) using the STAR software (version 2.4.2a) (6). The mapped reads were counted by featureCounts (version 

1.4.6-p5) (7). Differentially expressed genes (DEGs) call, comparing DNA treatments at each stage with the respective 

control, were made performing three different statistical approaches (FDR < 0.05): i) DESeq2 (Love et al. 2014); ii) 

edgeR and iii) edgeR GLM (8) . The union of the three approaches was considered for subsequent analyses.

A K-means cluster analysis on DEGs (|log2(FC)|! 1) was performed with MeV (9), using the Pearson Correlation as 

distance metric. DEGs and samples were also submitted to Principal Component Analysis (PCA), plotting vector 

loadings for treatment combinations (timing and type of exposure to DNA) and factorial scores of cluster centroids in 

the multivariate space defined by the first three ordination axis. Gene ontology (GO) enrichment analyses on DEGs 

were performed using the GOseq package (10) (FDR " 0.05), and the reference GO annotation for Arabidopsis 

(http://plants.ensembl.org/index.html). 

Finally, lists of genes annotated with the most enriched GOs, showing different expression pattern between self-DNA 

and nonself-DNA treatments at each observation stage (i.e. 1, 8 and 16 hours.) were collected in order to quantitatively 

assess between-treatment differences and discuss them in detail at single-gene level.

RESULTS AND DISCUSSION

The sensing of exDNA has been considered in the framework of DAMP (damage-associated molecular pattern) sensing 

(11)

Therefore, we considered all possible current annotation to filter out these evidences. However, no clear pattern arose, 

especially for self-DNA response.

The integrate bioinformatics approaches allowed the identification of a clear differential pattern of response to 

extracellular self- and nonself-DNA helping the understanding of the molecular mechanisms of a novel and 



uncharacterized biological process. In particular, from differentially expressed gene and GO enrichment analysis, a 

primary response to self-DNA sensing is represented by an altered chloroplast functioning and ROS production, 

eventually leading to damages and cell cycle arrest. Differently, nonself-DNA analysis highlighted the upregulation of 

genes related to the hypersensitive response, possibly evolving into systemic acquired resistance.
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Abstract 

Modern high-throughput technologies allow the collection of large omics data-sets with 

decreasing costs and times, and researchers can use such data to understand both complex cellular 

mechanisms and the molecular basis of disease onset and progression. For such purpose, 

scientists developed several computational methods for the analysis of omics data-sets. Among 

the most exciting approaches, network inference methods allow inferring the relationships among 

the system's unit. The units/variables (for example, the genes) represent a network's vertices, with 

the edges representing some form of relation. In this context, graphical models can describe the 

conditional dependence among two variables, given the remaining ones, as a graph.   

Nowadays, it is common to collect and analyze more than a single data-set for the same question 

of interest. The collected data-sets can be of different omics types, arise from various studies, 

collected in different laboratories, or with different technologies. The joint analysis of such data-

sets can lead to a more accurate characterization of the exam's biological system. However, to 

fully exploit the advantages of having multiple data-set, it is necessary to develop novel data 

integration methods.

We propose jewel, a novel method for the joint analysis of multiple data-sets under the 

assumption that each of them follows the Gaussian distribution and is, in fact, a graphical model. 

In this context, the conditional independence relationships between variables (genes) are encoded 

in the inverse covariance matrix. We assume that the conditional independence structure is shared 

among the different data-sets, but the covariance matrices can differ. In this setting, combining 

the individual data-sets into a single one and estimating a unique graphical model would mask the 

covariance matrices' underlying heterogeneity while estimating separate models for each case 

would not take advantage of the common underlying structure. 

This work describes the novel R package jewel. jewel is a novel method based on a group 

penalized regression approach to estimate a common dependency graph from multiple matrices 

and guarantees the sparsity and symmetry of the estimated graph. We illustrate the performance 

through simulated and real data examples describing transcriptional regulatory networks based on 

gene expression data. We compare the proposed approach with other available alternatives.
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Abstract

Co-occurrence of different phenotypes hampers the understanding of the molecular mechanisms

characterizing diseases. While many resources focus on the relationship among phenotypes, diseases, and 

genes, little is known about the relevance of molecular functions and functional processes underlying the 

occurrence of phenotypes.

To this aim, here we describe a new resource called PhenPath (phenpath.biocomp.unibo.it), recently 

published. PhenPath allows phenotype functional annotation, after an enrichment procedure of the functional 

annotation of the different phenotype/disease-associated genes. Functional annotations consider Gene 

Ontology (Molecular Function, Biological Process and Cellular Component), KEGG and Reactome 

pathways.

PhenPath can be adopted to endow a disease (described with a set of phenotypes) with novel links to genes 

and functional terms, retrieved by intersecting the sets of genes and functional terms associated with the 

single phenotypes in PhenPath, as we proved in many study cases (e.g.: Rett syndrome, Tourette syndrome).

We participated in the Critical Assessment of protein Function Annotation algorithms (CAFA) 4th edition 

using a method based on PhenPath, and the preliminary results of the experiment show that PhenPath is 

among the top-scoring methods. 

We propose our resource for directing scientific efforts, helping the diagnosis and retrieving new possible 

associations among biological processes and diseases.
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Abstract 

This study has been aimed to the screening of putative ligands of SARS-CoV2 proteins. The investigation 

has been performed by means of a semi-automatic procedure that includes molecular docking simulations 

with a large number of ligands against the PDB structures available of proteins from the SARS-Cov2. The 

semi-automatic procedure is configured to work on a linux server and, depending on the server 

computational power, it may produce thousands of protein-ligand simulations in about 24 hours. Results 

of the screening evidenced a number of ligands with potential  ability to bind the viral proteins, with a 

perspective interest in the finding of molecules useful against the pandemic urgency. 



��������	
��	
����������	��������	�������	�	����
��	����������


�������	
����������	���	��
����������

����������	�
���
�����������������
������
���������������������������
���������������������

��������������������������  ���������������������������!�"��#������������

��$��
���� ���
���� ��%� �!��&����'� �� ���(��)

������� ���� ��!����!�������������������*�� ������#�����!������+��,��
� -�!�#���" �!��!��.�����

/��!������001��2���"3�4��
�������56����.����
��0 ��'

������� ���� ��!����
����/73�4������1��+��,��
� -�!�#���" �!��!��.������/��!������001���.����
��0 ��'

��0
 � � ��.���������!����
����.���������"�������!��.�������.����
��0 ��'

���.	8"40.���9��������

��!����� ��"3���#�����,������ �����56��:�.����
��0 ��'

����70.�7�*�� ������#����,���� ���,������ ����"��,� �����5���56����.����
��0 ��'

7������;������
���!��#��� ���<�#�����3!���
�=�����3� 

��������

�.���� �'�� �����
������� �%������#��� ������)� �� ����'
���)�'�����������#��� ��#�#�����>���

���3�

0� �  ��
 � 
 �!'� �(�����;����! �� ���#�8!�� � �����'
�
 ��; ��.���� �'�� ��� �� �  �� �$���
���� ��� �" �� �"� �


������!��#���#�����;� ������
���8�
��� � ��?>�!�
��#������!��;� ����������8"������?>�!�
��#���3 ��.�

�� �'�� ��� �(�
 � ����'��! � �� �!�;;���� �  �

��
 � ��!9�� � !�;;���� � !�,������� �� � 
 �#�
� � ;�� � � �  � �� � �; � �@

!�;;���� ����!� ���
3�������������!� ����� �������!�,�!���
�(��������'��!��;����� � ����;��������'��!�
�����
3

��� � ���� � 
������ � (� � #�����! �  �� � ���������
 � �� � �� �'�� ��� � ���

�
 � A��
B� � %�
�! � �� �  �� � ���%�� � �;

�� �'�� �!��' �
���
� ��'�%���3

C��������'
��#� ������!�
 ��%� ���
��(���� �!� �� �������� ������!� ���
�����
 ����� �����

�%�����
�(���

�����
�� �!���� ���#��(� ��!�;;���� �;��&������
3���� ��������(��;���!� �� � ����.���� �'�� ����
 � �
�� 

 ��
�������!�;;���!�����#�����3�D�(�,���� ��
������8 �8�����!�;;������
�(�������� ����!�%� (����!�;;���� 

��!�,�!���
��(�������!��!�
��(�!�,��'�
��������.���� �'�� �������;���
3�

C�� ����;�����'�� ��
���!� �� � ����%
��,�!������������ ���#���� '��;��.���� �'�� �������;���
���;��� �!��

!'����� � %������ � %� (��� � �.� � �� �'�� ��� � ��! � !��� �'�� ���3 � ���
�!����# �  ��� ��( � �� ��8��!�,�!���

,����%��� '� �(����
���'�� ��
���!���
 ��!'8
 � ���&����%�������� �������������� ���3 �C��������!�,�����!��


�������� ���� �������!��� �� �
 � ��
��'�� ��
�
3�0 ��
�(�� ���� ��#� �� ���� ������
�� �����'
�
�(����!���!

%� ���.���� �'�� ������!�!��� �'�� �����
�������� �,�������

�
��(��������%�%��� '��� �
�(�����������'

!����!�� ���� ������%����;��� �'�� �!��' �
���
���� ������������3�

C������������#� ������!�� �!����!�
 ��%� ���
�(� �� ����>������� ���'�!� ������!����
��(���%
��,�!��

,��'�
� �
;�� ��'��#������ �� ��
�
�##�
 ��#� �� � ���!� ��(��������� �%���(� �� �����8������������;��.�

�� �'�� ��� ���! �!��� �'�� ��� �� �  �� �
����#������ � ����
3 ���� �������� ���� ���!�� � 
�##�
 �! �  �� �  ��

�� �'�� ����
 � �
��;����#�%����#��' �
���
���� ��%� �
� �� ��
�%������3



Structural model for recruitment of  RIT1 to the LZTR1 E3 ligase: 

evidences from an integrated computational approach

Antonella Paladino
1
, Michele Ceccarelli 

1,2 

1
BIOGEM Istituto di Ricerche Genetiche G. Salvatore, via Camporeale 83031, Ariano Irpino AV 

2
Dipartimento di Ingegneria Elettrica e delle Tecnologie dell� Informazione DIETI ,Università degli Studi di 

Napoli �Federico II�

Email of Corresponding author: antonella.paladino@biogem.it 

Abstract

LZTR1 (leucine-zipper like transcriptional regulator 1) was first identified as a tumor suppressor gene 

mutated in glioblastoma multiforme.
1
 Inactivating mutations have been reported as somatic events in cancer, 

while rare LZTR1 variants have been linked to schwannomatosis and Noonan syndrome, a RASopathy with 

a wide spectrum of developmental disorders and predisposition to certain cancers.
2-4

 Important efforts in the 

characterization of ubiquitin pathway across many cancer types also found that LZTR1 is among the 

frequently mutated genes.
5

LZTR1 encodes a multidomain protein of the BTB-Kelch superfamily; it is involved in apoptosis and 

ubiquitination, as a substrate adaptor in cullin 3 RING E3 ubiquitin ligase (CUL3) complexes. 

Recent mass spectrometry studies have detected the physical interaction between LZTR1 and RIT1, a RAS-

related small GTPase, confirming that either pathogenic mutations in LZTR1 or RIT1 fails to promote RIT1 

CUL3-mediated proteosomal degradation. 
6

Yet, very little is known about its active state and how it triggers 

the recruitment of substrates to ubiquitinate for degradation.

Here we address the structural characterization of LZTR1-RIT1 binding using an integrated computational 

approach
7
: 1) homology modeling to obtain the full-length LZTR1 3D structure; 2) molecular docking 

experiments for the prediction of the protein-protein complex; 3) mutational scanning to identify hotspots of 

the interaction and 4) all-atom Molecular Dynamics studies. Our findings yield important insights into the 

stability and conformational behavior of LZTR1-RIT1 complexes. We clarify the key role of specific  

pathogenic mutations on the recognition patterns and in the elicitation of E3 ubiquitin activity, thus 

contributing to elucidate E3-substrates relationships. 
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